Published
Bahadur’s Stochastic Comparison of Combining infinitely Independent Tests in Case of Extreme Value Distribution
Comparación estocástica de Bahadur de la combinación de pruebas infinitamente independientes en caso de distribución de valor extremo
DOI:
https://doi.org/10.15446/rce.v45n1.97466Keywords:
Extreme value distribution, Bahadur efficiency, Bahadur slope, Combining independent tests (en)Combinación de pruebas independientes, Distribución de valor extremo, Eficiencia Bahadur, Pendiente Bahadur (es)
Downloads
For simple null hypothesis, given any non-parametric combination method which has a monotone increasing acceptance region, there exists a problem for which this method is most powerful against some alternative. Starting from this perspective and recasting each method of combining pvalues as a likelihood ratio test, we present theoretical results for some of the standard combiners which provide guidance about how a powerful combiner might be chosen in practice. In this paper we consider the problem of combining n independent tests as n → ∞ for testing a simple hypothesis in case of extreme value distribution (EV(θ,1)). We study the six free-distribution combination test producers namely; Fisher, logistic, sum of p-values, inverse normal, Tippett’s method and maximum of p-values. Moreover, we studying the behavior of these tests via the exact Bahadur slope. The limits of the ratios of every pair of these slopes are discussed as the parameter θ → 0 and θ → ∞. As θ → 0, the logistic procedure is better than all other methods, followed in decreasing order by the inverse normal, the sum of p-values, Fisher, maximum of p-values and Tippett’s procedure. Whereas, θ → ∞ the logistic and the sum of p-values procedures are equivalent and better than all other methods, followed in decreasing order by Fisher, the inverse normal, maximum of p-values and Tippett’s procedure.
Para hipótesis nulas simples, dado cualquier método de combinación no paramétrico que tenga una región de aceptación creciente monótona, existe un problema para el cual este método es más poderoso frente a alguna alternativa. Partiendo de esta perspectiva y reformulando cada método de combinación de valores p como una prueba de razón de verosimilitud, presentamos resultados teóricos para algunos de los combinadores estándar que brindan orientación sobre cómo se podría elegir un combinador poderoso en la práctica. En este artículo consideramos el problema de combinar pruebas independientes de n como n → ∞ para probar una hipótesis simple en el caso de una distribución de valor extremo (EV (θ, 1)). Estudiamos los seis productores de prueba de combinación de distribución gratuita, a saber; Fisher, logística, suma de valores p, normal inversa, método de Tippett y máximo de valores p. Además, estudiamos el comportamiento de estas pruebas a través de la pendiente exacta de Bahadur. Los límites de las razones de cada par de estas pendientes se analizan como el parámetro θ → 0 y θ → ∞. Como θ → 0, la logística El procedimiento es mejor que todos los
demás métodos, seguido en orden decreciente por el inverso normal, la suma de valores p, Fisher, el máximo de valores p y el procedimiento de Tippett. Considerando que, θ → ∞ la logística y la suma de los procedimientos de valores p so equivalentes y mejores que todos los demás métodos, seguidos en orden decreciente por Fisher, la inversa normal, máxima de valores p y procedimiento de Tippett.
References
Abu-Dayyeh, W., Al-Momani, M. & Muttlak, H. (2003), ‘Exact bahadur slope for combining independent tests for normal and logistic distributions’, Applied Mathematics and Computation 135(2-3), 345–360. DOI: https://doi.org/10.1016/S0096-3003(01)00336-8
Abu-Dayyeh, W. & El-Masri, A. (1994), ‘Combining independent tests of triangular distribution’, Statistics & Probability Letters 21(3), 195–202. DOI: https://doi.org/10.1016/0167-7152(94)90115-5
Al-Masri, A. (2010), ‘Combining independent tests of conditional shifted exponential distribution’, Journal of Modern Applied Statistical Methods 9(1), 221–226. DOI: https://doi.org/10.22237/jmasm/1272687600
Al-Masri, A. (2021a), ‘Exact bahadur slope for combining independent tests in case of laplace distribution’, Jordan Journal of Mathematics and Statistics 14(1), 163–176.
Al-Masri, A. (2021b), ‘On combining independent tests in case of log-normal distribution’, American Journal of Mathematical and Management Sciences. https://doi.org/10.1080/01966324.2021.1997676 DOI: https://doi.org/10.1080/01966324.2021.1997676
Al-Masri, A. & Al-Momani, N. (2021), ‘On combining independent tests in case of log-logistic distribution’, Electronic Journal of Applied Statistical Analysis 14(1), 217–229.
Al-Talib, M., Al-Kadiri, M. & Al-Masri, A. (2020), ‘On combining independent tests in case of conditional normal distribution’, Communications in Statistics - Theory and Methods 49(23), 5627–5638. DOI: https://doi.org/10.1080/03610926.2019.1621343
Bahadur, R. (1960), ‘Stochastic comparison of tests’, The Annals of Mathematical Statistics 31(2), 276–295. DOI: https://doi.org/10.1214/aoms/1177705894
Serfling, R. (2009), Approximation theorems of mathematical statistics, Vol. 162, John Wiley & Sons.
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
CrossRef Cited-by
1. Marwan Al-Momani, Firas Ghanim, Hiba Fawzi Al-Janaby. (2024). Exact Bahadur Slope for combining independent tests in the case of the Pareto distribution. Heliyon, 10(14), p.e33954. https://doi.org/10.1016/j.heliyon.2024.e33954.
Dimensions
PlumX
Article abstract page views
Downloads
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).