Published
A Joint Model of Competing Risks in Discrete Time with Longitudinal Information
Un modelo de riesgos en competencia en tiempo discreto con información longitudinal
DOI:
https://doi.org/10.15446/rce.v46n2.98005Keywords:
Joint model, Survival model, Longitudinal model, Logistic regression, Discrete time (en)Modelo conjunto, Modelo de Supervivencia, Modelo longitudinal, Regresión logística, Tiempo discreto (es)
Downloads
The survival competing risks model in discrete time based on multinomial logistic regression, proposed by Luo et al. (2016), models the non-linear and irregular shape of hazard functions by incorporating a time-dependent spline into the multinomial logistic regression. This model also directly includes longitudinal variables in the regression. Due to the issues arising from including both baseline and longitudinal covariates in the extended form as proposed, and considering that the latter may be subject to error, this article suggests an extension of the existing model. The proposed extension utilizes the concept of joint models for longitudinal and survival data, which is an effective approach for integrating simultaneousness both baseline and time-dependent covariates into the survival model.,
El modelo de supervivencia de riesgos en competencia en tiempo discreto basado en regresión logística multinomial sugerida por Luo et al. (2016), modela la forma no lineal e irregular de las funciones de riesgo, incorporando un spline dependiente del tiempo en la regresión logística multinomial. Dicho modelo también incluye variables longitudinales directamente en la regresión. Debido a los problemas derivados de la inclusión tanto de covariables basales como longitudinales en la forma ampliada que hace la propuesta, y considerando que estas últimas pueden estar sujetas a error, este artículo sugiere una ampliación del modelo existente. La extensión propuesta utiliza el concepto de modelos conjuntos para datos longitudinales y de supervivencia, que es un enfoque eficaz para integrar simultáneamente en el modelo de supervivencia tanto las covariables basales como las dependientes del tiempo.
References
Annesi, I., Moreau, T. & Lellouch, J. (1989), ‘Efficiency of the logistic regression and Cox proportional hazards models in longitudinal studies’, Statistics in Medicine 8, 1515–1521. DOI: https://doi.org/10.1002/sim.4780081211
Begg, C. B. & Gray, R. (1984), ‘Calculation of polychotomous logistic regression parameters using individualized regressions’, Biometrika 71(1), 11–18. DOI: https://doi.org/10.1093/biomet/71.1.11
Bowman, A. W. & Azzalini, A. (1997), Applied Smoothing Techniques for Data Analysis. The Kernel Approach with S-Plus Illustrations, 1 edn, New York, Oxford University Press Inc. DOI: https://doi.org/10.1093/oso/9780198523963.003.0001
Cox, D. R. (1972), ‘Regression models and life tables (with discussion)’, Journal of the Royal Statistical Society, Series B 34, 187–220. DOI: https://doi.org/10.1111/j.2517-6161.1972.tb00899.x
Elandt-Johnson, R. C. (1980), Time dependent logistic models in follow-up studies and clinical trials, I. Binary data, Technical report, Institute of Statistics Mimeo Series No 1309, University of North Carolina.
Elashoff, R. M., Li, G. & Li, N. (2007), ‘An approach to joint analysis of longitudinal measurements and competing risks failure time data’, Statistics in Medicine 26, 2813–2835. DOI: https://doi.org/10.1002/sim.2749
Elashoff, R. M., Li, G. & Li, N. (2008), ‘Joint model for longitudinal measurements and survival data in the presence of multiple failure types’, Biometrics 64, 762–771. DOI: https://doi.org/10.1111/j.1541-0420.2007.00952.x
Green, M. S. & Symon, M. J. (1983), ‘A comparison of the logistic risk function and the proportional hazards model in prospective epidemiologic studies’, Journal of Clinical Epidemiology 36, 715–723. DOI: https://doi.org/10.1016/0021-9681(83)90165-0
Guo, X. & Carlin, B. P. (2004), ‘Separate and joint modeling of longitudinal and event time data using standard computer packages’, The American Statistician 58, 16–24. DOI: https://doi.org/10.1198/0003130042854
Henderson, R., Diggle, P. & Dobson, A. (2000), ‘Joint modelling of longitudinal measurements and event time data’, Biostatistics 4, 465–480. DOI: https://doi.org/10.1093/biostatistics/1.4.465
Houggard, P. (2000), Analysis of Multivariate Survival Data, Springer-Verlag, New York.
Klein, J. P. & Moeschberger, M. L. (2005), Survival Analysis: Techniques for Censored and Truncated Data, 3rd edn, Springer, New York.
Lawless, J. F. (2003), Statistical Models and Methods for Lifetime Data, 2nd edn, Wiley, Hoboken. DOI: https://doi.org/10.1002/9781118033005
Li, N., Elashoff, R. & Li, G. (2009), ‘Robust joint modeling of longitu-dinal measurements and competing risks failure time data’, Biometrical Journal 51, 19–30. DOI: https://doi.org/10.1002/bimj.200810491
Li, S., Li, N., Wang, H., Zhou, J., Zhou, H. & Li, G. (2022), ‘Efficient algorithms and implementation of a semiparametric joint model for longitudinal and competing risk data: With applications to massive biobank data’, Computational and Mathematical Methods in Medicine 2022, 1–12. DOI: https://doi.org/10.1155/2022/1362913
Lin, H., McCulloch, C. E. & Mayne, S. (2022), ‘Maximum likelihood estimation in the joint analysis of time-to-event and multiple longitudinal variables’, Statistics in Medicine 21(16). DOI: https://doi.org/10.1002/sim.1179
Liu, L. & Huang, X. (2009), ‘Joint analysis of correlated repeated measures and recurrent events processes in the presence of death, with application to a study on acquired immune deficiency syndrome’, Journal of the Royal Statistical Society 58, 65–81. DOI: https://doi.org/10.1111/j.1467-9876.2008.00641.x
Luo, S., Kong, X. & Nie, T. (2016), ‘Spline based survival model credit risk modeling’, European Journal of Operational Research 253, 869–879. DOI: https://doi.org/10.1016/j.ejor.2016.02.050
Myers, M. H., Hankey, B. F. & Mantel, N. A. (1973), ‘A logistic-exponential model for use with response time data involving regession variables’, Biometrics 29, 257–296. DOI: https://doi.org/10.2307/2529390
Nagelkerke, N. (1991), ‘A note on a general definition of the coefficient of determination’, Biometrika 78, 691–692. DOI: https://doi.org/10.1093/biomet/78.3.691
Rizopoulos, D. (2010), ‘JM: An R package for the joint modelling of longitudinal and time-to-event data’, Journal of Statistical Software 35, 1–33. DOI: https://doi.org/10.18637/jss.v035.i09
Rizopoulos, D. (2016), ‘The R package JMbayes for fitting joint models for longitudinal and time-to-event data using MCMC’, Journal of Statistical Software 72(7), 1–45. DOI: https://doi.org/10.18637/jss.v072.i07
Salazar, A. M. (2021), Un modelo conjunto de riesgos competitivos en tiempo discreto con información longitudinal, Tesis de maestría, Universidad Nacional de Colombia, Facultad de Ciencias. Departamento de Estadística, Bogotá.
SAS Institute (2013), ‘Sas/stat 9.4’. Cary, North Carolina, United States, SAS Institute Inc.
Teixeira, L., Sousa, I., Rodriguez, A. & Mendonça, D. (2019), ‘Joint modelling of longitudinal and competing risks data in clinical research’, REVSTAT-Statistical Journal 17(2), 245–264.
Tsiatis, A. A. & Davidian, M. (2004), ‘Joint modeling of longitudinal and timetoevent data: An overview’, Statistica Sinica 14, 809–834.
Verbeke, G. & Molenberghs, G. (2000), Linear Mixed Models for Longitudinal Data, 1 edn, Springer-Verlag, New York. DOI: https://doi.org/10.1007/978-1-4419-0300-6
Williamson, P. R., Kolamunnage-Dona, R., Philipson, P. & Marson, A. G. (2007), ‘Joint modelling of longitudinal and competing risks data’, Statistics in Medicine 27, 6426–6438. DOI: https://doi.org/10.1002/sim.3451
Wulfsohn, M. & Tsiatis, A. (1997), ‘A joint model for survival and longitudinal data measured with error’, Biometrics 53, 330–339. DOI: https://doi.org/10.2307/2533118
Zeng, D. & Cai, J. (2005), ‘Asymptotic results for maximum likelihood estimators in joint analysis of repeated measurements and survival time’, The Annals of Statistics 33, 2132–2163. DOI: https://doi.org/10.1214/009053605000000480
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).






