Published

2023-07-12

A Joint Model of Competing Risks in Discrete Time with Longitudinal Information

Un modelo de riesgos en competencia en tiempo discreto con información longitudinal

DOI:

https://doi.org/10.15446/rce.v46n2.98005

Keywords:

Joint model, Survival model, Longitudinal model, Logistic regression, Discrete time (en)
Modelo conjunto, Modelo de Supervivencia, Modelo longitudinal, Regresión logística, Tiempo discreto (es)

Downloads

Authors

  • Adriana Marcela Salazar Universidad Nacional de Colombia
  • Jaime Huertas Universidad Nacional de Colombia

The survival competing risks model in discrete time based on multinomial logistic regression, proposed by Luo et al. (2016), models the non-linear and irregular shape of hazard functions by incorporating a time-dependent spline into the multinomial logistic regression. This model also directly includes longitudinal variables in the regression. Due to the issues arising from including both baseline and longitudinal covariates in the extended form as proposed, and considering that the latter may be subject to error, this article suggests an extension of the existing model. The proposed extension utilizes the concept of joint models for longitudinal and survival data, which is an effective approach for integrating simultaneousness both baseline and time-dependent covariates into the survival model.,

El modelo de supervivencia de riesgos en competencia en tiempo discreto basado en regresión logística multinomial sugerida por Luo et al. (2016), modela la forma no lineal e irregular de las funciones de riesgo, incorporando un spline dependiente del tiempo en la regresión logística multinomial. Dicho modelo también incluye variables longitudinales directamente en la regresión. Debido a los problemas derivados de la inclusión tanto de covariables basales como longitudinales en la forma ampliada que hace la propuesta, y considerando que estas últimas pueden estar sujetas a error, este artículo sugiere una ampliación del modelo existente. La extensión propuesta utiliza el concepto de modelos conjuntos para datos longitudinales y de supervivencia, que es un enfoque eficaz para integrar simultáneamente en el modelo de supervivencia tanto las covariables basales como las dependientes del tiempo.

References

Annesi, I., Moreau, T. & Lellouch, J. (1989), ‘Efficiency of the logistic regression and Cox proportional hazards models in longitudinal studies’, Statistics in Medicine 8, 1515–1521. DOI: https://doi.org/10.1002/sim.4780081211

Begg, C. B. & Gray, R. (1984), ‘Calculation of polychotomous logistic regression parameters using individualized regressions’, Biometrika 71(1), 11–18. DOI: https://doi.org/10.1093/biomet/71.1.11

Bowman, A. W. & Azzalini, A. (1997), Applied Smoothing Techniques for Data Analysis. The Kernel Approach with S-Plus Illustrations, 1 edn, New York, Oxford University Press Inc. DOI: https://doi.org/10.1093/oso/9780198523963.003.0001

Cox, D. R. (1972), ‘Regression models and life tables (with discussion)’, Journal of the Royal Statistical Society, Series B 34, 187–220. DOI: https://doi.org/10.1111/j.2517-6161.1972.tb00899.x

Elandt-Johnson, R. C. (1980), Time dependent logistic models in follow-up studies and clinical trials, I. Binary data, Technical report, Institute of Statistics Mimeo Series No 1309, University of North Carolina.

Elashoff, R. M., Li, G. & Li, N. (2007), ‘An approach to joint analysis of longitudinal measurements and competing risks failure time data’, Statistics in Medicine 26, 2813–2835. DOI: https://doi.org/10.1002/sim.2749

Elashoff, R. M., Li, G. & Li, N. (2008), ‘Joint model for longitudinal measurements and survival data in the presence of multiple failure types’, Biometrics 64, 762–771. DOI: https://doi.org/10.1111/j.1541-0420.2007.00952.x

Green, M. S. & Symon, M. J. (1983), ‘A comparison of the logistic risk function and the proportional hazards model in prospective epidemiologic studies’, Journal of Clinical Epidemiology 36, 715–723. DOI: https://doi.org/10.1016/0021-9681(83)90165-0

Guo, X. & Carlin, B. P. (2004), ‘Separate and joint modeling of longitudinal and event time data using standard computer packages’, The American Statistician 58, 16–24. DOI: https://doi.org/10.1198/0003130042854

Henderson, R., Diggle, P. & Dobson, A. (2000), ‘Joint modelling of longitudinal measurements and event time data’, Biostatistics 4, 465–480. DOI: https://doi.org/10.1093/biostatistics/1.4.465

Houggard, P. (2000), Analysis of Multivariate Survival Data, Springer-Verlag, New York.

Klein, J. P. & Moeschberger, M. L. (2005), Survival Analysis: Techniques for Censored and Truncated Data, 3rd edn, Springer, New York.

Lawless, J. F. (2003), Statistical Models and Methods for Lifetime Data, 2nd edn, Wiley, Hoboken. DOI: https://doi.org/10.1002/9781118033005

Li, N., Elashoff, R. & Li, G. (2009), ‘Robust joint modeling of longitu-dinal measurements and competing risks failure time data’, Biometrical Journal 51, 19–30. DOI: https://doi.org/10.1002/bimj.200810491

Li, S., Li, N., Wang, H., Zhou, J., Zhou, H. & Li, G. (2022), ‘Efficient algorithms and implementation of a semiparametric joint model for longitudinal and competing risk data: With applications to massive biobank data’, Computational and Mathematical Methods in Medicine 2022, 1–12. DOI: https://doi.org/10.1155/2022/1362913

Lin, H., McCulloch, C. E. & Mayne, S. (2022), ‘Maximum likelihood estimation in the joint analysis of time-to-event and multiple longitudinal variables’, Statistics in Medicine 21(16). DOI: https://doi.org/10.1002/sim.1179

Liu, L. & Huang, X. (2009), ‘Joint analysis of correlated repeated measures and recurrent events processes in the presence of death, with application to a study on acquired immune deficiency syndrome’, Journal of the Royal Statistical Society 58, 65–81. DOI: https://doi.org/10.1111/j.1467-9876.2008.00641.x

Luo, S., Kong, X. & Nie, T. (2016), ‘Spline based survival model credit risk modeling’, European Journal of Operational Research 253, 869–879. DOI: https://doi.org/10.1016/j.ejor.2016.02.050

Myers, M. H., Hankey, B. F. & Mantel, N. A. (1973), ‘A logistic-exponential model for use with response time data involving regession variables’, Biometrics 29, 257–296. DOI: https://doi.org/10.2307/2529390

Nagelkerke, N. (1991), ‘A note on a general definition of the coefficient of determination’, Biometrika 78, 691–692. DOI: https://doi.org/10.1093/biomet/78.3.691

Rizopoulos, D. (2010), ‘JM: An R package for the joint modelling of longitudinal and time-to-event data’, Journal of Statistical Software 35, 1–33. DOI: https://doi.org/10.18637/jss.v035.i09

Rizopoulos, D. (2016), ‘The R package JMbayes for fitting joint models for longitudinal and time-to-event data using MCMC’, Journal of Statistical Software 72(7), 1–45. DOI: https://doi.org/10.18637/jss.v072.i07

Salazar, A. M. (2021), Un modelo conjunto de riesgos competitivos en tiempo discreto con información longitudinal, Tesis de maestría, Universidad Nacional de Colombia, Facultad de Ciencias. Departamento de Estadística, Bogotá.

SAS Institute (2013), ‘Sas/stat 9.4’. Cary, North Carolina, United States, SAS Institute Inc.

Teixeira, L., Sousa, I., Rodriguez, A. & Mendonça, D. (2019), ‘Joint modelling of longitudinal and competing risks data in clinical research’, REVSTAT-Statistical Journal 17(2), 245–264.

Tsiatis, A. A. & Davidian, M. (2004), ‘Joint modeling of longitudinal and timetoevent data: An overview’, Statistica Sinica 14, 809–834.

Verbeke, G. & Molenberghs, G. (2000), Linear Mixed Models for Longitudinal Data, 1 edn, Springer-Verlag, New York. DOI: https://doi.org/10.1007/978-1-4419-0300-6

Williamson, P. R., Kolamunnage-Dona, R., Philipson, P. & Marson, A. G. (2007), ‘Joint modelling of longitudinal and competing risks data’, Statistics in Medicine 27, 6426–6438. DOI: https://doi.org/10.1002/sim.3451

Wulfsohn, M. & Tsiatis, A. (1997), ‘A joint model for survival and longitudinal data measured with error’, Biometrics 53, 330–339. DOI: https://doi.org/10.2307/2533118

Zeng, D. & Cai, J. (2005), ‘Asymptotic results for maximum likelihood estimators in joint analysis of repeated measurements and survival time’, The Annals of Statistics 33, 2132–2163. DOI: https://doi.org/10.1214/009053605000000480

How to Cite

APA

Salazar, A. M. & Huertas, J. (2023). A Joint Model of Competing Risks in Discrete Time with Longitudinal Information. Revista Colombiana de Estadística, 46(2), 145–161. https://doi.org/10.15446/rce.v46n2.98005

ACM

[1]
Salazar, A.M. and Huertas, J. 2023. A Joint Model of Competing Risks in Discrete Time with Longitudinal Information. Revista Colombiana de Estadística. 46, 2 (Jul. 2023), 145–161. DOI:https://doi.org/10.15446/rce.v46n2.98005.

ACS

(1)
Salazar, A. M.; Huertas, J. A Joint Model of Competing Risks in Discrete Time with Longitudinal Information. Rev. colomb. estad. 2023, 46, 145-161.

ABNT

SALAZAR, A. M.; HUERTAS, J. A Joint Model of Competing Risks in Discrete Time with Longitudinal Information. Revista Colombiana de Estadística, [S. l.], v. 46, n. 2, p. 145–161, 2023. DOI: 10.15446/rce.v46n2.98005. Disponível em: https://revistas.unal.edu.co/index.php/estad/article/view/98005. Acesso em: 8 nov. 2025.

Chicago

Salazar, Adriana Marcela, and Jaime Huertas. 2023. “A Joint Model of Competing Risks in Discrete Time with Longitudinal Information”. Revista Colombiana De Estadística 46 (2):145-61. https://doi.org/10.15446/rce.v46n2.98005.

Harvard

Salazar, A. M. and Huertas, J. (2023) “A Joint Model of Competing Risks in Discrete Time with Longitudinal Information”, Revista Colombiana de Estadística, 46(2), pp. 145–161. doi: 10.15446/rce.v46n2.98005.

IEEE

[1]
A. M. Salazar and J. Huertas, “A Joint Model of Competing Risks in Discrete Time with Longitudinal Information”, Rev. colomb. estad., vol. 46, no. 2, pp. 145–161, Jul. 2023.

MLA

Salazar, A. M., and J. Huertas. “A Joint Model of Competing Risks in Discrete Time with Longitudinal Information”. Revista Colombiana de Estadística, vol. 46, no. 2, July 2023, pp. 145-61, doi:10.15446/rce.v46n2.98005.

Turabian

Salazar, Adriana Marcela, and Jaime Huertas. “A Joint Model of Competing Risks in Discrete Time with Longitudinal Information”. Revista Colombiana de Estadística 46, no. 2 (July 12, 2023): 145–161. Accessed November 8, 2025. https://revistas.unal.edu.co/index.php/estad/article/view/98005.

Vancouver

1.
Salazar AM, Huertas J. A Joint Model of Competing Risks in Discrete Time with Longitudinal Information. Rev. colomb. estad. [Internet]. 2023 Jul. 12 [cited 2025 Nov. 8];46(2):145-61. Available from: https://revistas.unal.edu.co/index.php/estad/article/view/98005

Download Citation

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Article abstract page views

316

Downloads

Download data is not yet available.