Aplicación de biocarbón como estrategia de remediación de suelos contaminados por hidrocarburos
Adding biochar as a strategy for clean-up of hydrocarbon-contaminated soils
Palabras clave:
Biorremediación, biocarbón, hidrocarburos, suelo. (es)Biorremediation, biochar, hydrocarbon, soil. (en)
Descargas
La contaminación de suelos con hidrocarburos es una problemática persistente a nivel mundial. A pesar de que se han estudiado diferentes métodos de descontaminación, su aceptación ha sido limitada por los amplios desafíos a nivel técnico, económico y ambiental, por lo que se reconoce la importancia de abarcar mecanismos mayormente viables y sostenibles, como lo es la remediación a partir de la aplicación de biocarbón. Para tal fin, en el presente estudio se realizó un análisis documental de información secundaria acerca de las propiedades y el uso del biocarbón como una alternativa viable para la remediación de suelos contaminados con hidrocarburos, obteniendo como resultado que presenta un alto potencial por sus excelentes características fisicoquímicas que le permiten desempeñarse como un agente sorbente, de bioestimulación de las actividades enzimáticas de la microbiota edáfica autóctona que degrada los contaminantes a través de diferentes rutas metabólicas, además de participar en la bioaumentación de microrganismos hidrocarbonoclásticos, lo que resulta en altas eficiencias de bioremediación.
Hydrocarbon contaminated soils are a persistent problem worldwide. Although different methods of decontamination have been studied, their acceptance has been limited by the broad technical, economic and environmental challenges. Therefore, the importance of embracing largely viable and sustainable mechanisms is recognized, as is remediation from the application of biocarbon.
To this end, the present study developed a documentary analysis of secondary information about the properties and use of biochar as a more sustainable alternative for the remediation of soils contaminated with hydrocarbons, obtaining that It has a high potential due to its excellent physicochemical characteristics that allow it to act as a sorbent agent, biostimulating the enzymatic activities of the native edaphic microbiota that degrade contaminants through different metabolic pathways, in addition to participating in the bioaugmentation of hydrocarbonoclastic microorganisms, resulting in high bioremediation efficiencies.
Referencias
Abbas, Z., Ali, S., Rizwan, M., Zaheer, I. E., Malik, A., Riaz, M. A., Shahid, M. R., Rehman, M. Z. u., & Al-Wabel, M. I. (2018). A critical review of mechanisms involved in the adsorption of organic and inorganic contaminants through biochar. Arabian Journal of Geosciences, 11(16), 1-23. https://doi.org/10.1007/s12517-018-3790-1
Ahmad, M., Rajapaksha, A. U., Lim, J. E., Zhang, M., Bolan, N., Mohan, D., Vithanage, M., Lee, S. S., & Ok, Y. S. (2014). Biochar as a sorbent for contaminant management in soil and water: A review. Chemosphere (Oxford), 99, 19-33. https://doi.org/10.1016/j.chemosphere.2013.10.071
Ajona, M., & Vasanthi, P. (2021). Bioremediation of petroleum contaminated soils – A review. Materials Today: Proceedings, 45, 7117-7122. https://doi.org/https://doi-org.ezproxy.unbosque.edu.co/10.1016/j.matpr.2021.01.949
Ali, M. H., Khan, M. I., Bashir, S., Azam, M., Naveed, M., Qadri, R., Bashir, S., Mehmood, F., Shoukat, M. A., Li, Y., Alkahtani, J., Elshikh, M. S., & Dwiningsih, Y. (2021). Biochar and Bacillus sp. MN54 Assisted Phytoremediation of Diesel and Plant Growth Promotion of Maize in Hydrocarbons Contaminated Soil. Agronomy (Basel), 11(9), 1795. https://doi.org/10.3390/agronomy11091795
Ambaye, T. G., Chebbi, A., Formicola, F., Prasad, S., Gomez, F. H., Franzetti, A., & Vaccari, M. (2022). Remediation of soil polluted with petroleum hydrocarbons and its reuse for agriculture: Recent progress, challenges, and perspectives. Chemosphere, 293, 133572. https://doi.org/https://doi-org.ezproxy.uamerica.edu.co/10.1016/j.chemosphere.2022.133572
Anae, J., Ahmad, N., Kumar, V., Thakur, V. K., Gutierrez, T., Yang, X. J., Cai, C., Yang, Z., & Coulon, F. (2021). Recent advances in biochar engineering for soil contaminated with complex chemical mixtures: Remediation strategies and future perspectives. The Science of the Total Environment, 767, 144351.18 https://doi.org/10.1016/j.scitotenv.2020.144351
Assil, Z., Esegbue, O., Mašek, O., Gutierrez, T., & Free, A. (2021). Specific enrichment of hydrocarbonclastic bacteria from diesel-amended soil on biochar particles. Science of the Total Environment, 762, 143084. https://doi.org/https://doi-org.ezproxy.uamerica.edu.co/10.1016/j.scitotenv.2020.143084
ATSDR. (2020). ATSDR’s Substance Priority List. https://www.atsdr.cdc.gov/spl/
Bao, H., Wang, J., Zhang, H., Li, J., Li, H., & Wu, F. (2020). Effects of biochar and organic substrates on biodegradation of polycyclic aromatic hydrocarbons and microbial community structure in PAHs-contaminated soils. Journal of Hazardous Materials, 385, 121595. https://doi.org/10.1016/j.jhazmat.2019.121595
Bianco, F., Race, M., Papirio, S., Oleszczuk, P., & Esposito, G. (2021). The addition of biochar as a sustainable strategy for the remediation of PAH–contaminated sediments. Chemosphere, 263, 128274. https://doi.org/https://doi-org.ezproxy.uamerica.edu.co/10.1016/j.chemosphere.2020.128274
Dike, C. C., Shahsavari, E., Surapaneni, A., Shah, K., & Ball, A. S. (2021). Can biochar be an effective and reliable biostimulating agent for the remediation of hydrocarbon-contaminated soils? Environment International, 154, 106553. https://doi.org/https://doi-org.ezproxy.unbosque.edu.co/10.1016/j.envint.2021.106553
El-Naggar, A., Lee, S. S., Rinklebe, J., Farooq, M., Song, H., Sarmah, A. K., Zimmerman, A. R., Ahmad, M., Shaheen, S. M., & Ok, Y. S. (2019). Biochar application to low fertility soils: A review of current status, and future prospects. Geoderma, 337, 536-554. https://doi.org/10.1016/j.geoderma.2018.09.034
García-Delgado, C., Alfaro-Barta, I., & Eymar, E. (2015). Combination of biochar amendment and mycoremediation for polycyclic aromatic hydrocarbons immobilization and biodegradation in creosote-contaminated soil. Journal of Hazardous Materials, 285, 259-266. https://doi.org/10.1016/j.jhazmat.2014.12.002
Guo, J., Yang, S., He, Q., Chen, Y., Zheng, F., Zhou, H., Hou, C., Du, B., Jiang, S., & Li, H. (2021). Improving benzo(a)pyrene biodegradation in soil with wheat straw-derived biochar amendment: Performance, microbial quantity, CO2 emission, and soil properties. Journal of Analytical and Applied Pyrolysis, 156, 105132. https://doi.org/10.1016/j.jaap.2021.105132
Guo, S., Liu, X., & Tang, J. (2022). Enhanced degradation of petroleum hydrocarbons by immobilizing multiple bacteria on wheat bran biochar and its effect on greenhouse gas emission in saline-alkali soil. Chemosphere, 286, 131663. https://doi.org/https://doi-org.ezproxy.uamerica.edu.co/10.1016/j.chemosphere.2021.131663
Hussain, F., Hussain, I., Khan, A. H. A., Muhammad, Y. S., Iqbal, M., Soja, G., Reichenauer, T. G., Zeshan, & Yousaf, S. (2018). Combined application of biochar, compost, and bacterial consortia with Italian ryegrass enhanced phytoremediation of petroleum hydrocarbon contaminated soil. Environmental and Experimental Botany, 153, 80-88. https://doi.org/10.1016/j.envexpbot.2018.05.012
Ji, M., Wang, X., Usman, M., Liu, F., Dan, Y., Zhou, L., Campanaro, S., Luo, G., & Sang, W. (2022). Effects of different feedstocks-based biochar on soil remediation: A review. Environmental Pollution (1987), 294, 118655. https://doi.org/10.1016/j.envpol.2021.118655
Kong, L., Song, B., Zhang, T., Gao, K., & Liu, J. (2021). Effects of soil organic matter on biochar application in developing the biodegradation potentials of polycyclic aromatic hydrocarbons (PAHs). Applied Soil Ecology, 167, 104046. https://doi.org/https://doi-org.ezproxy.uamerica.edu.co/10.1016/j.apsoil.2021.104046
Li, G., Chen, F., Jia, S., Wang, Z., Zuo, Q., & He, H. (2020). Effect of biochar on Cd and pyrene removal and bacteria communities variations in soils with culturing ryegrass (Lolium perenne L.). Environmental Pollution (1987), 265, 114887. https://doi.org/10.1016/j.envpol.2020.114887
Li, X., Li, Y., Zhang, X., Zhao, X., Sun, Y., Weng, L., & Li, Y. (2019). Long-term effect of biochar amendment on the biodegradation of petroleum hydrocarbons in soil microbial fuel cells. The Science of the Total Environment, 651(Pt 1), 796-806. https://doi.org/10.1016/j.scitotenv.2018.09.098
Liu, Y., Lonappan, L., Brar, S. K., & Yang, S. (2018). Impact of biochar amendment in agricultural soils on the sorption, desorption, and degradation of pesticides: A review. Science of the Total Environment, 645, 60-70. https://doi.org/https://doi-org.ezproxy.unbosque.edu.co/10.1016/j.scitotenv.2018.07.099
Mansoor, S., Kour, N., Manhas, S., Zahid, S., Wani, O. A., Sharma, V., Wijaya, L., Alyemeni, M. N., Alsahli, A. A., El-Serehy, H. A., Paray, B. A., &
Ahmad, P. (2021). Biochar as a tool for effective management of drought and heavy metal toxicity. Chemosphere, 271, 129458. https://doi.org/https://doi.org/10.1016/j.chemosphere.2020.129458
Matustik, J., Hnatkova, T., & Koci, V. (2020). Life cycle assessment of biochar-to-soil systems: A review. Journal of Cleaner Production, 259, 120998. https://doi.org/10.1016/j.jclepro.2020.120998
Mazarji, M., Minkina, T., Sushkova, S., Mandzhieva, S., Barakhov, A., Barbashev, A., Dudnikova, T., Lobzenko, I., & Giannakis, S. (2022). Decrypting the synergistic action of the Fenton process and biochar addition for sustainable remediation of real technogenic soil from PAHs and heavy metals. Environmental Pollution (1987), 303, 119096. https://doi.org/10.1016/j.envpol.2022.119096
Meyer, D. D., Beker, S. A., Bücker, F., Peralba, Maria do Carmo Ruaro, Guedes Frazzon, A. P., Osti, J. F., Andreazza, R., Anastácio de Oliveira Camargo, Flávio, & Bento, F. M. (2014). Bioremediation strategies for diesel and biodiesel in oxisol from southern Brazil. International Biodeterioration & Biodegradation, 95, 356-363. https://doi.org/https://doi-org.ezproxy.uamerica.edu.co/10.1016/j.ibiod.2014.01.026
Oleszczuk, P., Rakowska, M., Bucheli, T. D., Godlewska, P., & Reible, D. D. (2019). Combined Effects of Plant Cultivation and Sorbing Carbon Amendments on Freely Dissolved PAHs in Contaminated Soil. Environmental Science & Technology, 53(9), 4860-4868. https://doi.org/10.1021/acs.est.8b06265
Ossai, I. C., Ahmed, A., Hassan, A., & Hamid, F. S. (2020). Remediation of soil and water contaminated with petroleum hydrocarbon: A review. Environmental Technology & Innovation, 17, 100526. https://doi.org/https://doi-org.ezproxy.unbosque.edu.co/10.1016/j.eti.2019.100526
Partovinia, A., & Rasekh, B. (2018). Review of the immobilized microbial cell systems for bioremediation of petroleum hydrocarbons polluted environments. Null, 48(1), 1-38. https://doi.org/10.1080/10643389.2018.1439652
Qiao, K., Tian, W., Bai, J., Dong, J., Zhao, J., Gong, X., & Liu, S. (2018). Preparation of biochar from Enteromorpha prolifera and its use for the removal of polycyclic aromatic hydrocarbons (PAHs) from aqueous solution. Ecotoxicology and Environmental Safety, 149, 80-87. https://doi.org/10.1016/j.ecoenv.2017.11.027
Rombolà, A. G., Fabbri, D., Baronti, S., Vaccari, F. P., Genesio, L., & Miglietta, F. (2019). Changes in the pattern of polycyclic aromatic hydrocarbons in soil treated with biochar from a multiyear field experiment. Chemosphere (Oxford), 219, 662-670. https://doi.org/10.1016/j.chemosphere.2018.11.178
Saeed, M., Ilyas, N., Jayachandran, K., Gaffar, S., Arshad, M., Sheeraz Ahmad, M., Bibi, F., Jeddi, K., & Hessini, K. (2021). Biostimulation potential of biochar for remediating the crude oil contaminated soil and plant growth. Saudi Journal of Biological Sciences, 28(5), 2667-2676. https://doi.org/https://doi-org.ezproxy.uamerica.edu.co/10.1016/j.sjbs.2021.03.044
Tomczyk, A., Sokołowska, Z., & Boguta, P. (2020). Biochar physicochemical properties: pyrolysis temperature and feedstock kind effects. Reviews in Environmental Science and Biotechnology, 19(1), 191-215. https://doi.org/10.1007/s11157-020-09523-3
Valizadeh, S., Lee, S. S., Choi, Y. J., Baek, K., Jeon, B., Andrew Lin, K., & Park, Y. (2022). Biochar application strategies for polycyclic aromatic hydrocarbons removal from soils. Environmental Research, 213https://doi.org/10.1016/j.envres.2022.113599
Varma, A. K., Shankar, R., & Mondal, P. (2018). A Review on Pyrolysis of Biomass and the Impacts of Operating Conditions on Product Yield, Quality, and Upgradation. Recent Advancements in Biofuels and Bioenergy Utilization (pp. 227-259). Springer Singapore. https://doi.org/10.1007/978-981-13-1307-3_10
Vijayaraghavan, K. (2019). Recent advancements in biochar preparation, feedstocks, modification, characterization and future applications. Environmental Technology Reviews, 8(1), 47-64. https://doi.org/10.1080/21622515.2019.1631393
Wang, J., & Wang, S. (2019). Preparation, modification and environmental application of biochar: A review. Journal of Cleaner Production, 227, 1002-1022. https://doi.org/10.1016/j.jclepro.2019.04.282
Wei, Z., Wang, J. J., Gaston, L. A., Li, J., Fultz, L. M., DeLaune, R. D., & Dodla, S. K. (2020). Remediation of crude oil-contaminated coastal marsh soil: Integrated effect of biochar, rhamnolipid biosurfactant and nitrogen application. Journal of Hazardous Materials, 396, 122595. https://doi.org/10.1016/j.jhazmat.2020.122595
Wei, Z., Wang, J. J., Meng, Y., Li, J., Gaston, L. A., Fultz, L. M., & DeLaune, R. D. (2020). Potential use of biochar and rhamnolipid biosurfactant for remediation of crude oil-contaminated coastal wetland soil: Ecotoxicity assessment. Chemosphere (Oxford), 253, 126617. https://doi.org/10.1016/j.chemosphere.2020.126617
Woźniak-Karczewska, M., Lisiecki, P., Białas, W., Owsianiak, M., Piotrowska-Cyplik, A., Wolko, Ł, Ławniczak, Ł, Heipieper, H. J., Gutierrez, T., & Chrzanowski, Ł. (2019). Effect of bioaugmentation on long-term biodegradation of diesel/biodiesel blends in soil microcosms. Science of the Total Environment, 671, 948-958. https://doi.org/https://doi.org/10.1016/j.scitotenv.2019.03.431
Wu, C., Zhi, D., & Yao, B. (2022). Immobilization of microbes on biochar for water and soil remediation: A review. Environmental Research, , 113226. https://doi.org/https://doi-org.ezproxy.uamerica.edu.co/10.1016/j.envres.2022.113226
Wu, Y., Liu, X., Dong, Q., Xiao, M., Li, B., Topalović, O., Tao, Q., Tang, X., Huang, R., Chen, G., Li, H., Chen, Y., Feng, Y., & Wang, C. (2022). Remediation of petroleum hydrocarbons-contaminated soil: Analysis based on Chinese patents. Chemosphere (Oxford), 297, 134173. https://doi.org/10.1016/j.chemosphere.2022.134173
Xu, Y., & Lu, M. (2010). Bioremediation of crude oil-contaminated soil: Comparison of different biostimulation and bioaugmentation treatments. Journal of Hazardous Materials, 183(1), 395-401. https://doi.org/https://doi-org.ezproxy.unbosque.edu.co/10.1016/j.jhazmat.2010.07.038
Yaashikaa, P. R., Kumar, P. S., Varjani, S., & Saravanan, A. (2020). A critical review on the biochar production techniques, characterization, stability and applications for circular bioeconomy. Biotechnology Reports, 28, e00570. https://doi.org/10.1016/j.btre.2020.e00570
Zahed, M. A., Salehi, S., Madadi, R., & Hejabi, F. (2021). Biochar as a sustainable product for remediation of petroleum contaminated soil. Current Research in Green and Sustainable Chemistry, 4, 100055. https://doi.org/https://doi-org.ezproxy.uamerica.edu.co/10.1016/j.crgsc.2021.100055
Zama, E., Reid, B., Arp, H., Sun, G., Yuan, H., & Zhu, Y. (2018). Advances in research on the use of biochar in soil for remediation: a review. Journal of Soils and Sediments, 18(7), 2433-2450. https://doi.org/10.1007/s11368-018-2000-9
Zhang, B., Zhang, L., & Zhang, X. (2019). Bioremediation of petroleum hydrocarbon-contaminated soil by petroleum-degrading bacteria immobilized on biochar. Royal Society of Chemistry, 9, , 35304–35311. https://pubs.rsc.org/en/content/articlelanding/2019/RA/C9RA06726D#fig1
Zhang, F., Zhang, G., & Liao, X. (2021). Negative role of biochars in the dissipation and vegetable uptake of polycyclic aromatic hydrocarbons (PAHs) in an agricultural soil: Cautions for application of biochars to remediate PAHs-contaminated soil. Ecotoxicology and Environmental Safety, 213, 112075. https://doi.org/10.1016/j.ecoenv.2021.112075
Zhang, G., He, L., Guo, X., Han, Z., Ji, L., He, Q., Han, L., & Sun, K. (2020). Mechanism of biochar as a biostimulation strategy to remove polycyclic aromatic hydrocarbons from heavily contaminated soil in a coking plant. Geoderma, 375, 114497. https://doi.org/10.1016/j.geoderma.2020.114497
Zhen, M., Chen, H., Liu, Q., Song, B., Wang, Y., & Tang, J. (2019). Combination of rhamnolipid and biochar in assisting phytoremediation of petroleum hydrocarbon contaminated soil using Spartina anglica. Journal of Environmental Sciences (China), 85, 107-118. https://doi.org/10.1016/j.jes.2019.05.013
Zhou, X., Shi, L., Moghaddam, T. B., Chen, M., Wu, S., & Yuan, X. (2022). Adsorption mechanism of polycyclic aromatic hydrocarbons using wood waste-derived biochar. Journal of Hazardous Materials, 425, 128003. https://doi.org/10.1016/j.jhazmat.2021.128003
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
Visitas a la página del resumen del artículo
Descargas
Licencia

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Los artículos que sean publicados en la revista Gestión y Ambiente, también serán publicados en el sitio web http://www.revistas.unal.edu.co/index.php/gestion/index y en formatos electrónicos como PDF, HTML, XML, entre otros. Además, en diferentes redes sociales de difusión del conocimiento. Gestión y Ambiente adopta directrices de ética por Committee on Publication Ethics (COPE) sobre buenas prácticas de conducta (evitar conductas como plagio, falsificación, autoría ficticia, entre otros), describe conflictos de interés o en competencia, contribuciones de autoría y fuentes de financiación. Todo lo publicado se considerará propiedad de la revista Gestión y Ambiente, pero pueden usarse bajo la licencia Creative Commons “Reconocimiento-No Comercial-Compartir Igual International (BY-NC-SA) 4.0”


