The Zapatoca Karstic System is made up by caves of different lengths, in which we find underground rivers, endemic species and scientific information of great importance. It is our duty to conserve this wonderful underground ecosystem. Photography of the Alsacias Cave. Source: M. Caffroni

Publicado

2020-07-01

Integration of Geological, Mineralogical and Geochemical Methods in the Characterization of El Nitro and Las Alsacias Caves, Zapatoca (Colombia)

Integración de métodos geológicos, mineralógicos y geoquímicos en la caracterización de las cavernas El Nitro y Las Alsacias, Zapatoca (Colombia)

DOI:

https://doi.org/10.15446/ga.v23n2.89675

Palabras clave:

Geomorphology, karst, hydrogeology, petrography, cartography (en)
Geomorfología, karst, hidrogeología, petrografía, cartografía (es)

Descargas

Autores/as

The present study integrates geological, mineralogical and geochemical methods in the characterization of the caves: El Nitro and Las Alsacias, from Zapatoca (Colombia). With lithologies dating from the Lower Cretaceous, these cavities reveal a great variety of exokarst geoforms with different types of slips present on the surface, indicating changes in past atmospheric conditions. A great variety of speleothems (endokarstic geoforms) was also found, such as columns, stalactites, stalagmites, among others, which demonstrate a change in calcite saturation in the precipitated water. The morphology of the underground water bodies found showed variations in the dynamics of the karst aquifer (piezometric level and recharge), and it was evidenced that these cavities have structural control. The information obtained in the field (speleothematic catalogs, speleometry, maps, lithostratigraphy and structural data) were validated with atmospheric data and laboratory tests. This research provides new insights into geomorphology (epigeal and hypogeal), hydrogeology and mineralogy; serving as support for future work focused on paleoclimatic reconstruction, tectonic, paleosismic and climate change studies. These cavities represent scientific laboratories of great interest to the academy, since in them phenomena such as global warming and piezometric variations related to atmospheric phenomena can be evidenced.

El presente estudio integra métodos geológicos, mineralógicos y geoquímicos en la caracterización de las cavernas: El Nitro y Las Alsacias, de Zapatoca (Colombia). Con litologías que datan del Cretácico Inferior, estas cavidades revelan una gran variedad de geoformas exokársticas con diferentes tipos de lapiaces presentes en superficie, indicando cambios en las condiciones atmosféricas pasadas. Se encontró también una gran variedad de espeleotemas (geoformas endokársticas), tales como columnas, estalactitas, estalagmitas, entre otros, que demuestran un cambio en la saturación de calcita en el agua precipitada. La morfología de los cuerpos hídricos subterráneos encontrados demostró variaciones en la dinámica del acuífero kárstico (nivel piezométrico y recarga), y se evidenció que estas cavidades presentan un control estructural. La información obtenida en campo (catálogos espeleotemáticos, espeleometría, mapas, litoestratigrafía y datos estructurales) fueron validados con datos atmosféricos y pruebas de laboratorio. Esta investigación brinda nuevos conocimientos sobre geomorfología (epigea e hipogea), hidrogeología y mineralogía; sirviendo de apoyo a futuros trabajos enfocados a la reconstrucción paleoclimática, estudios tectónicos, paleosísmicos y de cambio climático. Estas cavidades representan laboratorios científicos de gran interés para la academia pues en ellas se pueden evidenciar fenómenos como el calentamiento global y variaciones piezométricas relacionadas a fenómenos atmosféricos.

Referencias

Agencia Nacional de Hidrocarburos of Colombia (ANH), 2012. Cuenca Valle medio del Magdalena. Integración Geológica de la Digitalización y Análisis de Núcleos Pozo: Infantas-1613, Evaluación Petrofísica ShaleXpert Pozos: Catalina-1 y Cocuyo-1. Bogotá, DC.

Agliardi, F., Sapigni, M., and Crosta, G., 2016. Rock mass characterization by high-resolution sonic and GSI borehole logging. Rock Mech. Rock Eng. 49, 4303-4318. DOI: 10.1007/s00603-016-1025-x

Al-Manmia, D., Ismaeel, S., and Altaweel, M., 2019. Reconstruction of palaeoclimate in Shalaii Cave, SE of Sangaw, Kurdistan Province of Iraq. Palaeogeogr. Palaeoclimatol. Palaeoecol. 524, 262-272. DOI: 10.1016/j.palaeo.2019.03.044

Audra, P.,Palmer, A., 2011. The pattern of caves: Controls of epigenic speleogenesis. Géomorphol.: Relief Process. Environ. 17(4), 359-378. DOI: 10.4000/geomorphologie.9571

Ayalon, A., Bar-Matthews, M., Kaufman, A., 1999. Petrography, strontium, barium and uranium concentrations, and strontium and uranium isotope ratios in speleothems as palaeoclimatic proxies: Soreq Cave, Israel. Holocene 9(6), 715-722. DOI: 10.1191/095968399673664163

Bakun-Mazor, D., Hatzor, Y., Dershowitz, W., 2009. Modeling mechanical layering effects on stability of underground openings in jointed sedimentary rocks. Int. J. Rock Mech. Min. Sci. 46, 262-271. DOI: 10.1016/j.ijrmms.2008.04.001

Banner, J., Guilfoyle, A., James, E., Stern, L., Musgrove, M., 2007. Seasonal variations in modern speleothem calcite growth in Central Texas, USA. J. Sediment. Res. 77, 615-622. DOI: 10.2110/jsr.2007.065

Bechtel, Timothy Daniel, Bosch, Frank Peter, and Gurk, Marcus. 2007. Geophysical methods. In: Goldscheider, N., Drew, D. (Ed.), Methods in Karst hydrogeology. International Association of Hydrogeologists, London. pp. 171-200.

Bedoya, C., Hefer, N., 2013. Estratigrafía, quimioestratigrafía y petrografía de la formación Rosablanca: implicaciones para la identificación de eventos anóxicos oceánico en la Cordillera Oriental Colombiana. Undergraduate thesis, Universidad de Caldas, Manizales, Colombia.

Borsato, A., Frisia, S., Fairchild, I., Somogyi, A., Susini, J., 2007. Trace element distribution in annual stalagmite laminae mapped by micrometer-resolution X-ray fluorescence: Implications for incorporation of environmentally significant species. Geochimi. Cosmochim. Acta 71(6), 1494-1512. DOI: 10.1016/j.gca.2006.12.016

Bradley, R., 1999. Paleoclimatology. Reconstructing climates of the Quaternary. International Geophysics Series Vol. 68. Academic Press, Burlington, MA.

Brown, E., 2004. The mechanics of discontinua: Engineering in discontinuous rock masses. Aust. Geomech. J. 39(2) 1-20.

Carvajal-Perico, J., 2012 Propuesta de estandarización de la cartografía geomorfológica en Colombia. Instituto Colombiano de Geología y Minería (INGEOMINAS), Bogotá, DC.

Clavijo, J., 1996. Mapa Geológico de Colombia, Plancha 75. Aguachica, Escala 1:100.000. Memoria Explicativa. Instituto Colombiano de Geología y Minería (INGEOMINAS), Bucaramanga, Colombia

Cooke, M., Mollema, P., Pollard, D., Aydin, A., 1999. Interlayer slip and joint localization in East Kaibab Monocline, Utah: field evidence and results from numerical modeling. In: Cosgrove, J. Ameen, M. (Eds.), Forced folds and fracture. Geological Society of London, Special Publications. Vol. 169, London. pp. 23-49. DOI: 10.1144/GSL.SP.2000.169.01.03

Denniston, R., González, L., Asmerom, Y., Sharma, R., Reagan, M., 2000. Speleothem evidence for changes in Indian summer monsoon precipitation over the last ∼2300 years. Quat. Res. 53(2), 196-202. DOI: 10.1006/qres.1999.2111

Denniston, R., Luetscher, M., 2017. Speleothems as high-resolution paleoflood archives. Quat. Sci. Rev. 170, 1-13. DOI: 10.1016/j.quascirev.2017.05.006

Dreybrodt, W., Romanov, D., 2008. Regular stalagmites: The theory behind their shape. Acta Carsologica 37(2), 175-184. DOI: 10.3986/ac.v37i2-3.145

Du Preez, G., du Plessis, A., de Beer, D., Forti, P., 2018. Non-destructive, high-resolution X-ray micro-CT of a Hairy Stalagmite: investigating the structural details of a biogenic speleothem. Int. J. Environ. Sci. Technol. 15, 1843-1850. DOI: 10.1007/s13762-017-1543-4

Duan, W., Cai, B., Tan, M., Liu, H., Zhang, Y., 2012. The growth mechanism of the aragonitic stalagmite laminae from Yunnan Xianren Cave, SW China revealed by cave monitoring. Boreas 41(1), 113-123. DOI: 10.1111/j.1502-3885.2011.00226.x

Duan, W., Tan, M., Cheng, H., Zhang, Y., 2010. Intra-annual structure of aragonitic stalagmite laminae from Yunnan Xianren Cave: SEM. Quat. Sci. 30, 1066-1067.

Etayo Serna, F., Guzmán Ospitia, G., 2019. Formación Rosa Blanca: subdivision de la Formación y propuesta de Neoestratotipo. Sección laguna El Sapo, vereda El Carrizal, municipio de Zapatoca, departamento de Santander. In: Estudios geológicos y paleontológicos sobre el Cretácico en la región del embalse del río Sogamoso, Valle Medio del Magdalena. Compilación de los Estudios Geológicos Oficiales en Colombia. Vol. 23. Servicio Geológico Colombiano, Bogotá, DC.

Fairchild, I., Baker, A., 2012. Speleothem science: From process to past environments. Wiley-Blackwell, Chichester, UK. DOI: 10.1002/9781444361094

Fairchild, I. McMillan, E., 2007. Speleothems as indicators of wet and dry periods. Int. J. Speleol. 36(2), 69-74. DOI: 10.5038/1827-806X.36.2.2

Fairchild, I., Smith, C., Baker, A., Fuller, L., Spötl, C., Mattey, D., McDermott, F., 2006. Modification and preservation of environmental signals in speleothems. Earth-Sci. Rev. 75, 105-153. DOI: 10.1016/j.earscirev.2005.08.003

Fairchild, I., Treble, P., 2009. Trace elements in speleothems as recorders of environmental change. Quat. Sci. Rev. 28(5-6): 449-468. DOI: 10.1016/j.quascirev.2008.11.007

Fiorillo, F., 2009. Spring hydrographs as indicators of droughts in a karst environment. J. Hydrol. 373(3-4), 290-301. DOI: 10.1016/j.jhydrol.2009.04.034

Franke, H., 1965. The theory behind stalagmite shapes. Stud. Speleol. 1, 89-95.

Frisia, S., 2015. Microstratigraphic logging of calcite fabrics in speleothems as tool for palaeoclimate studies. Int. J. Speleol. 44(1), 1-16. DOI: 10.5038/1827-806X.44.1.1

Galvis, M., Velandia, F., 2019. Mapa del potencial kárstico del departamento de Santander, Colombia. Revista de Topografía AZIMUT (10), 1-6.

Galvis-Gómez, M., 2018. Mapa del potencial kárstico del departamento de Santander (Colombia). Monographic thesis. Universidad Militar Nueva Granada, Bogotá , DC.

Gázquez, F., Calaforra, J. Forti, P., Rull, F., Martínez-Frías, J., 2012. Gypsum-carbonate speleothems from Cueva de las Espadas (Naica mine, Mexico): mineralogy and palaeohydrogeological implications. Int. J. Speleol. 41(2), 211-220. DOI: 10.5038/1827-806X.41.2.8

Ghasemizadeh, R., Hellweger, F., Butscher, C., Padilla, I., Vesper, D., Field, M., Alshawabkeh, A., 2012. Groundwater flow and transport modeling of karst aquifers, with particular reference to the North Coast Limestone aquifer system of Puerto Rico. Hydrogeol. J. 20, 1441-1461. DOI: 10.1007/s10040-012-0897-4

Gilli, E., 2005. Review on the use of natural cave speleothems as palaeoseismic or neotectonics indicators. Comptes Rendus Geosciences 337(13), 1208-1215. DOI: 10.1016/j.crte.2005.05.008

Ginés, A., 1990. Utilización de las morfologías de lapiaz como geoindicadores ecológicos en la Serra de Tramuntana (Mallorca). Endins 16, 27-39.

Goldscheider, N., Meiman, J., Pronk, M., Smart, C., 2008. Tracer tests in karst hydrogeology and speleology. Int. J. Speleol. 37, 27-40. DOI: 10.5038/1827-806X.37.1.3

Guerrero, J., 2002. A proposal on the classification of system tracts: Application of allostratigraphy and sequence stratigraphy of the Cretaceous Colombian Basin. Part 1: Berrisian to Hauterivian. Geologia Colombiana 27, 3-25.

Guo, W., Zhou, C., 2019. Patterns and controls of disequilibrium isotope effects in speleothems: Insights from an isotope-enabled diffusion-reaction model and implications for quantitative thermometry. Geochimi. Cosmochimi. Acta 267, 196-226. DOI: 10.1016/j.gca.2019.07.028

Guzmán, G., 1985. Los grifeidos infracretácicos Aetostreon couloni y Ceratostreon boussingaulti, de la Formación Rosablanca, como indicadores de oscilaciones marinas. Publ. Geolog. Esp. 16. Instituto Colombiano de Geología y Minería (INGEOMINAS), Bogota. pp. 1-16

Hartland, A., Fairchild, I., Müller, W., Dominguez-Villar, D., 2014. Preservation of NOM-metal complexes in a modern hyperalkaline stalagmite: Implications for speleothem trace element geochemistry. Geochimi. Cosmochimi. Acta 128, 29-43. DOI: 10.1016/j.gca.2013.12.005

Hosseini, S., Ataie-Ashtiani, B., Simmons, Craig., 2017. Spring hydrograph simulation of karstic aquifers: Impacts of variable recharge area, intermediate storage and memory effects. J. Hydrol. 552, 225-240. DOI: 10.1016/j.jhydrol.2017.06.018

Instituto de Hidrología, Meteorología y Estudios Ambientales of Colombia (IDEAM), 2020. Datos Meteorológicos Zapatoca (Santander) - Colombia. Available at http://dhime.ideam.gov.co/atencionciudadano/

Jiménez, G., López, O., Jaimes, L., Mier, R., 2016. Variaciones en el estilo estructural relacionado con anisotropías de basamento en el Valle Medio del Magdalena. Rev. Acad. Colomb. Cienc. Ex. Fis. Nat. 40 (155), 312-319. DOI: 10.18257/raccefyn.293

Jones, B., 2009. Phosphatic precipitates associated with actinomycetes in speleothems from Grand Cayman, British West Indies. Sediment. Geol. 219, 302-317. DOI: 10.1016/j.sedgeo.2009.05.020

Jones, B., Zheng, E., Li, L., 2018. Growth and development of notch speleothems from Cayman Brac, British West Indies: Response to variable climatic conditions over the last 125,000 years. Sediment. Geol. 373, 210-227. DOI: 10.1016/j.sedgeo.2018.06.005

Julivert, M., 1958. La morfoestructura de la zona de mesas al SW de Bucaramanga. Boletín de Geología 1, 7-44.

Kambesis, P., 2007. The importance of cave exploration to scientific research. J. Cave Karst Stud. 69(1), 46-58.

Klimchouk, A., Ford, D., Palmer, A., Dreybrodt, W., 2000a. Lithologic and structural controls of dissolutional cave development. In: Klimchouk, A., Ford, D., Palmer, A., Dreybrodt, W. (Eds.), Speleogenesis. evolution of karst aquifers. National Speleological Society, Huntsville, AL. pp. 54-64.

Klimchouk, A., Ford, D., Palmer, A., Dreybrodt, W. (Eds.), 2000b. Speleogenesis, evolution of karst aquifers. National Speleological Society, Huntsville, AL.

Klimchouk, A., 2015. The karst paradigm: Changes, trends and perspectives. Acta Carsologica 44(3), 289-313. DOI: 10.3986/ac.v44i3.2996

Lachniet, M., 2009. Climatic and environmental controls on speleothem oxygen-isotope values. Quat. Sci. Rev. 28, 412-432. DOI: 10.1016/j.quascirev.2008.10.021

Lee, N., Meisinger, D., Aubrecht, R., Kovacik, L., Saiz-Jimenez, C., Baskar, R., Liebl, W., Porter, M., Engel, A., 2012. Caves and karst environments. In: Bell, E., Callaghan, T. (Eds.), Life at extremes: environments, organisms and strategies for survival. CAB International, Wallingford, UK. pp. 320-344. DOI: 10.1079/9781845938147.0320

Li, G., Goldscheider, N., Field, M., 2016. Modeling karst spring hydrograph recession based on head drop at sinkholes. J. Hydrol. 542, 820-827. DOI: 10.1016/j.jhydrol.2016.09.052

Lima Figueira, R., Coimbra Horbe, A., Herrera Aragón, F., Freitas Gonçalves, D., 2019. Exotic sulphate and phosphate speleothems in caves from eastern Amazonia (Carajás, Brazil): Crystallographic and chemical insights. J. S. Am. Earth Sci. 90, 412-422. DOI: 10.1016/j.jsames.2018.12.007

Llopis, N., 1970. Fundamentos de la hidrogeología kárstica: Introducción a la geoespeleología. Blume, Madrid.

Mahmud, K., Mariethoz, G., Baker, A. Treble, P., 2018. Hydrological characterization of cave drip waters in a porous limestone: Golgotha Cave, Western Australia. Hydrol. Earth Syst. Sci. 22, 977-988. DOI: 10.5194/hess-22-977-2018

Mariethoz, G., Kelly, B., Baker, A., 2012. Quantifying the value of laminated stalagmites for paleoclimate reconstructions. Geophys. Res. Lett. 39, L05407. DOI: 10.1029/2012GL050986

Martín-Chivelet, J., Muñoz-García, B., Cruz, J., Ortega, A., Turrero, M., 2017. Speleothem architectural analysis: Integrated approach for stalagmite-based paleoclimate research. Sediment. Geol. 353, 28-45. DOI: 10.1016/j.sedgeo.2017.03.003

McCormack, T., O’Connell, Y., Daly, E., Gill, L., Henry, T., Perriquet, M., 2017. Characterisation of karst hydrogeology in Western Ireland using geophysical and hydraulic modelling techniques. J. Hydrol.: Reg. Stud. 10, 1-17. DOI: 10.1016/j.ejrh.2016.12.083

McDermott, F., 2004. Palaeo-climate reconstruction from stable isotope variations in speleothems: a review. Quat. Sci. Rev. 23, 901-918. DOI: 10.1016/j.quascirev.2003.06.021

McDermott, F., Schwarcz, H., Rowe, P., 2006. Isotopes in speleothems. In: Leng, M. (Eds.), Isotopes in paleoenvironmental research. Springer, Heidelberg, Germany. pp. 186-226.

Mendoza-Parada, J., Moreno-Murillo, J., Rodríguez-Orjuela, G., 2009. El sistema cárstico de la formación Rosablanca Cretácico inferior, en la provincia santandereana de Vélez, Colombia. Geología Colombiana 34, 35-44.

Moore, P., Martin, J., Screaton, E., 2009. Geochemical and statistical evidence of recharge, mixing, and controls on spring discharge in an eogenetic karst aquifer. J. Hydrol. 373(3-4), 443-455. DOI: 10.1016/j.jhydrol.2009.07.052

Morales, J., 1958. General geology and oil ocurrences of Middle Magdalena Valley, Colombia. AAPG Habitat of Oil Symposium A125, 641-695.

Muñoz-García, M., Cruz, J., Martín-Chivelet, J., Ortega, A., Turrero, M., López-Elorza, M., 2016. Comparison of speleothem fabrics and microstratigraphic stacking patterns in calcite stalagmites as indicators of paleoenvironmental change. Quat. Int. 407A, 74-85. DOI: 10.1016/j.quaint.2016.02.036

Muñoz-García, M., Martín-Chivelet, J., Rossi, C., Ford, D., Schwarcz, H., 2008. Comparación del clima interglacial eemiense y holoceno en el norte de España a partir de los indicadores paleoclimáticos de estalagmitas de la Cueva del Cobre Palencia. Geo-Temas 10, 1459-1462.

Muñoz-Saba, Y., Casallas-Pabón, M., Murcia-López, D., Hoyos-Rodríguez, M., Rodríguez-Orjuela, G., Moreno-Murillo, J., Mendoza-Parada, J., 2013. Cavernas de Santander, Colombia. Serie de Guías: Instituto de Ciencias Naturales, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, DC.

Perrin, C., Prestimonaco, L., Servelle, G., Tilhac, R., Maury, M., Cabrol, P., 2014. Aragonite-calcite speleothems: Identifying original and diagenetic features. J. Sediment. Res. 84, 245-269. DOI: 10.2110/jsr.2014.17

Polyak, V., Asmerom, Y., 2001. Late Holocene climate and cultural changes in the southwestern United States. Science 294(5540), 148-151. DOI: 10.1126/science.1062771

Proctor, C., Baker, A., Barnes, W., Gilmour, M., 2000. A thousand year speleothem proxy record of North Atlantic climate from Scotland. Clim. Dyn. 16, 815-820. DOI: 10.1007/s003820000077

Railsback, B., Liang, F., Vidal-Romaní, J., Blanche, K., Sellers, R., Vaqueiro-Rodríguez, M., Grandal-d'Anglade, A., Cheng, H., Lawrence, R., 2017. Radiometric, isotopic, and petrographic evidence of changing interglacials over the past 550,000 years from six stalagmites from the Serra do Courel in the Cordillera Cantábrica of northwestern Spain. Palaeogeogr. Palaeoclimatol. Palaeoecol. 466, 137-152. DOI: 10.1016/j.palaeo.2016.11.020

Rossi, C., Lozano, R., 2016. Hydrochemical controls on aragonite versus calcite precipitation in cave dripwaters. Geochimi. Cosmochimi. Acta 192, 70-96. DOI: 10.1016/j.gca.2016.07.021

Scroxton, N., Burns, S., Dawson, P., Rhodes, M., Brent, K., McGee, D., Heijnis, H., Gadd, P., Hantoro, W., Gagan, M., 2018. Rapid measurement of strontium in speleothems using core-scanning micro X-ray fluorescence. Chem. Geol. 487, 12-22. DOI: 10.1016/j.chemgeo.2018.04.008

Spötl, C., Fairchild, I. Tooth, A., 2005. Cave air control on dripwater geochemistry, Obir Caves (Austria): Implications for speleothem deposition in dynamically ventilated caves. Geochimi. Cosmochimi Acta 69(10), 2451-2468. DOI: 10.1016/j.gca.2004.12.009

Turgeon, S., Lundberg, J., 2001. Chronology of discontinuities and petrology of speleothems as paleoclimatic indicators of the klamath mountains, Southwest Oregon, USA. Carbonates Evaporites 16(2), 153-167. DOI: 10.1007/BF03175833

Vanghi, V., Iriarte, E., Aranburu, A., 2015. High resolution X-ray computed tomography for petrological characterization of speleothems. J. Cave Karst Stud. Natl. Speleol. Soc. Bull. 77, 75-82. DOI: 10.4311/2014ES0102

Walczak, I., Baldini, J., Baldini, L., McDermott, F., Marsden, S., Standish, C., Richards, D., Andreo, B., Slater, J., 2015. Reconstructing high-resolution climate using CT scanning of unsectioned stalagmites: A case study identifying the mid-Holocene onset of the Mediterranean climate in southern Iberia. Quat. Sci. Rev. 127, 117-128. DOI: 10.1016/j.quascirev.2015.06.013

White, W., 2006. Identification of cave minerals by Raman spectroscopy: New technology for non-destructive analysis. Int. J. Speleol. 352, 103-107. DOI: 10.5038/1827-806X.35.2.6

Wong, C., Breecker, D., 2015. Advancements in the use of speleothems as climate archives. Quat. Sci. Rev. 127, 1-18. DOI: 10.1016/j.quascirev.2015.07.019

Yadava, M., Ramesh, R., Pant, G., 2004. Past monsoon rainfall variations in peninsular India recorded in a 331-year-old speleothem. Holocene 14, 517-524. DOI: 10.1191/0959683604hl728rp

Zafra, D., 2019. Caracterización geoespeleológica de sistemas kársticos en Zapatoca Santander con fines de geoeducación y geoconservación, caso de las cavernas: El Nitro y Las Alsacias. Undergraduate thesis, Universidad Industrial de Santander, Bucaramanga, Colombia. DOI: 10.13140/RG.2.2.10891.95526/1

Zhang, J., Li, T.-Y., 2019. Seasonal and interannual variations of hydrochemical characteristics and stable isotopic compositions of drip waters in Furong Cave, southwest China based on 12 years monitoring. J. Hydrol. 572, 40-50. DOI: 10.1016/j.jhydrol.2019.02.052

Zizu, N., Schwarcz, H., Konnyer, N., Chow, T., Noseworthy, M., 2012. Macroholes in stalagmites and the search for lost water. J. Geophys. Res. 117, F03020. DOI: 10.1029/2011JF002288

Cómo citar

APA

Zafra-Otero, D. y Ríos-Reyes, C. A. (2020). Integration of Geological, Mineralogical and Geochemical Methods in the Characterization of El Nitro and Las Alsacias Caves, Zapatoca (Colombia). Gestión y Ambiente, 23(2), 203–226. https://doi.org/10.15446/ga.v23n2.89675

ACM

[1]
Zafra-Otero, D. y Ríos-Reyes, C.A. 2020. Integration of Geological, Mineralogical and Geochemical Methods in the Characterization of El Nitro and Las Alsacias Caves, Zapatoca (Colombia). Gestión y Ambiente. 23, 2 (jul. 2020), 203–226. DOI:https://doi.org/10.15446/ga.v23n2.89675.

ACS

(1)
Zafra-Otero, D.; Ríos-Reyes, C. A. Integration of Geological, Mineralogical and Geochemical Methods in the Characterization of El Nitro and Las Alsacias Caves, Zapatoca (Colombia). Gest. Ambient. 2020, 23, 203-226.

ABNT

ZAFRA-OTERO, D.; RÍOS-REYES, C. A. Integration of Geological, Mineralogical and Geochemical Methods in the Characterization of El Nitro and Las Alsacias Caves, Zapatoca (Colombia). Gestión y Ambiente, [S. l.], v. 23, n. 2, p. 203–226, 2020. DOI: 10.15446/ga.v23n2.89675. Disponível em: https://revistas.unal.edu.co/index.php/gestion/article/view/89675. Acesso em: 19 jul. 2024.

Chicago

Zafra-Otero, Diego, y Carlos Alberto Ríos-Reyes. 2020. «Integration of Geological, Mineralogical and Geochemical Methods in the Characterization of El Nitro and Las Alsacias Caves, Zapatoca (Colombia)». Gestión Y Ambiente 23 (2):203-26. https://doi.org/10.15446/ga.v23n2.89675.

Harvard

Zafra-Otero, D. y Ríos-Reyes, C. A. (2020) «Integration of Geological, Mineralogical and Geochemical Methods in the Characterization of El Nitro and Las Alsacias Caves, Zapatoca (Colombia)», Gestión y Ambiente, 23(2), pp. 203–226. doi: 10.15446/ga.v23n2.89675.

IEEE

[1]
D. Zafra-Otero y C. A. Ríos-Reyes, «Integration of Geological, Mineralogical and Geochemical Methods in the Characterization of El Nitro and Las Alsacias Caves, Zapatoca (Colombia)», Gest. Ambient., vol. 23, n.º 2, pp. 203–226, jul. 2020.

MLA

Zafra-Otero, D., y C. A. Ríos-Reyes. «Integration of Geological, Mineralogical and Geochemical Methods in the Characterization of El Nitro and Las Alsacias Caves, Zapatoca (Colombia)». Gestión y Ambiente, vol. 23, n.º 2, julio de 2020, pp. 203-26, doi:10.15446/ga.v23n2.89675.

Turabian

Zafra-Otero, Diego, y Carlos Alberto Ríos-Reyes. «Integration of Geological, Mineralogical and Geochemical Methods in the Characterization of El Nitro and Las Alsacias Caves, Zapatoca (Colombia)». Gestión y Ambiente 23, no. 2 (julio 1, 2020): 203–226. Accedido julio 19, 2024. https://revistas.unal.edu.co/index.php/gestion/article/view/89675.

Vancouver

1.
Zafra-Otero D, Ríos-Reyes CA. Integration of Geological, Mineralogical and Geochemical Methods in the Characterization of El Nitro and Las Alsacias Caves, Zapatoca (Colombia). Gest. Ambient. [Internet]. 1 de julio de 2020 [citado 19 de julio de 2024];23(2):203-26. Disponible en: https://revistas.unal.edu.co/index.php/gestion/article/view/89675

Descargar cita

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Visitas a la página del resumen del artículo

1186

Descargas

Los datos de descargas todavía no están disponibles.