Development of Additive Reasoning in Young Children: The Case of Partitioning and the Successor Function
Desarrollo del razonamiento aditivo en niños pequeños: El caso de la partición y la función de sucesión
DOI:
https://doi.org/10.15446/rcp.v34n1.105537Keywords:
preschool children, numerical knowledge, additive reasoning, successor function, partitioning, development, child development (en)niños preescolares, conocimiento numérico, razonamiento aditivo, función de sucesión, partición, desarrollo (es)
Downloads
Additive reasoning is a fundamental mathematical skill that children learn during elementary school. However, previous studies have suggested that children start their learning process in preschool. The current research aims to examine how two additive reasoning skills, successor function and partitioning, emerge in the preschool years. To this purpose, a group of 56 children of 4 and 5 years of age were tested on three additive tasks, a cardinality task, and a counting task. The results show a similar developmental trajectory for children’s performance on the successor function task and the partitioning tasks, with significantly better performance in 5-year-olds. The results also show that children’s cardinality knowledge and counting skills are good predictors in both additive reasoning tasks. These findings suggest that preschool is a critical period for learning the additive structure of the number system and that knowledge of verbal counting boosts this acquisition.
El razonamiento aditivo es una habilidad matemática fundamental que los niños aprenden durante la escuela primaria. Sin embargo, estudios anteriores han sugerido que los niños inician su proceso de aprendizaje en preescolar. La presente investigación pretende examinar cómo emergen dos habilidades de razonamiento aditivo, la función de sucesión y la partición, en los años preescolares. Para ello, un grupo de 56 niños de 4 y 5 años fueron evaluados en tres tareas aditivas, una tarea de cardinalidad y una tarea de conteo. Los resultados muestran una trayectoria de desarrollo similar para el rendimiento de los niños en la tarea de función de sucesión y en las tareas de partición, con un rendimiento significativamente mejor en los niños de 5 años. Los resultados también muestran que el conocimiento de cardinalidad y las habilidades de conteo de los niños son buenos predictores en ambas tareas de razonamiento aditivo. Estos resultados sugieren que la etapa preescolar es un periodo crítico para el aprendizaje de la estructura aditiva del sistema numérico y que el conocimiento del conteo verbal potencia esta adquisición.
References
Alsina, A. (2022). Itinerarios didácticos para la enseñanza de las matemáticas (3-6 años). GRAÓ.
Badiou, A. (2008). Number and Numbers. Polity Press
Bermejo, V. (2004). Cómo enseñar matemáticas para aprender mejor. CCS
Canobi, K. H., Reeve, R. A., & Pattison, P. E. (2002). Young children's understanding of addition concepts. Educational Psychology, 22(5), 513-532. https://doi.org/10.1080/0144341022000023608
Canobi, K. H., Reeve, R. A., & Pattison, P. E. (2003). Patterns of knowledge in children's addition. Developmental Psychology, 39(3), 521–534. https://doi.org/10.1037/0012-1649.39.3.521
Carey, S. (2009). The Origin of Concepts. Oxford University Press.
Carraher, T.N., Carraher, D.W. and Schliemann, A.D. (1985), Mathematics in the streets and in schools. British Journal of Developmental Psychology, 3, 21-29. https://doi.org/10.1111/j.2044-835X.1985.tb00951.x
Chamorro, M. (2005). Didáctica de las Matemáticas para Educación Infantil. Pearson Education
Cheung, P., Rubenson, M., & Barner, D. (2017). To infinity and beyond: Children generalize the successor function to all possible numbers years after learning to count. Cognitive Psychology, 92, 22-36. https://doi.org/10.1016/j.cogpsych.2016.11.002
Chuey, A., Lockhart, K., Sheskin, M. & Keil, F. (2020). Children and adults selectively generalize mechanistic knowledge. Cognition, 199, 104231. https://doi.org/10.1016/j.cognition.2020.104231
Ching, B. H. H., & Kong, K. H. C. (2022). Understanding additive composition is important for symbolic numerical magnitude processing. Cognitive Development, 62, 101170. https://doi.org/10.1016/j.cogdev.2022.101170
Clements, D. H., & Sarama, J. (2007). Effects of a preschool mathematics curriculum: Summative research on the Building Blocks project. Journal for Research in Mathematics Education, 38(2), 136-163. https://doi.org/10.2307/30034954
Davidson, K., Eng, K., Barner, D. (2012). Does learning to count involve a semantic induction? Cognition, 123(1), 162-173. https://doi.org/10.1016/j.cognition.2011.12.013
Dyson, N., Jordan, N.C., Beliakoff, A., & Hasinger-Das, B. (2015). A kindergarten number-sense intervention with contrasting practice conditions for low-achieving children. Journal for Research in Mathematics Education, 46(3), 331-370. https://doi.org/10.5951/jresematheduc.46.3.0331
Fuson, K. C. (1988). Children's counting and concepts of number. Springer-Verlag Publishing.
Fuson, K. C., Wearne, D., Hiebert, J. C., Murray, H. G., Human, P. G., Olivier, A. I., Carpenter, T. P., & Fennema, E. (1997). Children’s Conceptual Structures for Multidigit Numbers and Methods of Multidigit Addition and Subtraction. Journal for Research in Mathematics Education, 28(2), 130–162. https://doi.org/10.2307/749759
Fuson K. (2019) Relating Math Words, Visual Images, and Math Symbols for Understanding and Competence, International Journal of Disability. Development and Education, 66:2, 119-132, https://doi.org/10.1080/1034912X.2018.1535109
Geary, D., Hoard, M., Nugent, L, & Bailey, DH (2013) Adolescents’ Functional Numeracy Is Predicted by Their School Entry Number System Knowledge. PLOS ONE 8(1): e54651. https://doi.org/10.1371/journal.pone.0054651
Gelman, R. (1993). A rational-constructivist account of early learning about numbers and objects. In D. L. Medin (Ed.), The psychology of learning and motivation (pp. 61–96). Academic Press.
Guerrero, D., Hwang, J., Boutin, B, Roeper, T. & Park, J. (2020). Is thirty-two three tens and two ones? The embedded structure of cardinal numbers. Cognition, 203 (3), 104331. https://doi.org/10.1016/j.cognition.2020.104331
Hirsch, S., Lambert, K., Coppens, K., & Moeller, K. (2018). Basic numerical competences in large-scale assessment data: Structure and long-term relevance. Journal of Experimental Child Psychology, 167, 32–48. https://doi.org/10.1016/j.jecp.2017.09.015
Johnston, A.M., Sheskin, M. & Keil, F. (2019). Learning the Relevance of Relevance and the Trouble with Truth: Evaluating Explanatory Relevance across Childhood. Journal of Cognition and Development, 20(4), 552-572. https://doi.org/10.1080/15248372.2019.1631167
Jordan, N. C., Kaplan, D., Ramineni, C., & Locuniak, M. N. (2009). Early math matters: kindergarten number competence and later mathematics outcomes. Developmental psychology, 45(3), 850–867. https://doi.org/10.1037/a0014939
Krebs, G., Squire, S. & Bryant, P. (2003). Children's understanding of the additive composition of number and of the decimal structure: What is the relationship? International Journal of Educational Research. 39. 677-694. https://doi.org/10.1016/j.ijer.2004.10.003
Le Corre, M., Brannon, E.M., Van de Walle, G., y Carey, S. (2006). Re-visiting the competence/performance debate in the acquisition of the counting principles. Cognitive Psychology, 52 (2), 130-169. https://doi.org/10.1016/j.cogpsych.2005.07.002
Nunes T. & Bryant P. (1996). Children doing mathematics. Blackwell.
Obando, G., & Vásquez, N. (Octubre, 2008). Pensamiento numérico del preescolar a la educación básica [curso]. 2018. 9 Encuentro Colombiano de Matemática Educativa. Valledupar, Colombia. http://funes.uniandes.edu.co/933/1/1Cursos.pdf
Piantadosi, S.T., Jara-Ettinger, J. and Gibson, E. (2014), Children's learning of number words in an indigenous farming-foraging group. Developmental Science, 17: 553-563. https://doi.org/10.1111/desc.12078
Prather, R. W., & Alibali, M. W. (2009). The development of arithmetic principle knowledge: How do we know what learners know? Developmental Review, 29(4), 221–248. https://doi.org/10.1016/j.dr.2009.09.001
Resnick, L. B. (1989). Developing mathematical knowledge. American Psychologist, 44(2), 162–169. https://doi.org/10.1037/0003-066X.44.2.162
Robinson, K. M., & Dubé, A. K. (2013). Children's additive concepts: Promoting understanding and the role of inhibition. Learning and Individual Differences, 23, 101–107. https://doi.org/10.1016/j.lindif.2012.07.016
Rodríguez, P., Lago, M., Caballero, S., Dopico, C., Jiménez, L., & Solbes, I. (2008). El desarrollo de las estrategias infantiles. Un estudio sobre el razonamiento aditivo y multiplicativo. Anales de Psicología, 24(2), 240-252. https://www.redalyc.org/pdf/167/16711589007.pdf
Santana Espitia, A. C., Fajardo Santamaría, J. A., & Herrera Rojas, A. N. (2018). El aprendizaje situado de la adición y la sustracción. Revista Latinoamericana de Etnomatemáticas, 11(2), 98-119. https://www.revista.etnomatematica.org/index.php/RevLatEm/article/view/515/440
Sarnecka, B.W. & Carey, S. (2008). How counting represents number: What children must learn and when they learn it. Cognition, 108(3), 662-674. https://doi.org/10.1016/j.cognition.2008.05.007
Saxton, M. & Cakir, K. (2006). Counting-on, trading and partitioning: Effects of training and prior knowledge on performance on base-10 tasks. Child Development, 77(3), 767-785. https://doi.org/10.1111/j.1467-8624.2006.00902.x
Schneider, R. M., Sullivan, J., Marušič, F., Žaucer, R., Biswas, P., Mišmaš, P., Plesničar, V., & Barner, D. (2020). Do children use language structure to discover the recursive rules of counting? Cognitive Psychology, 117, Article 101263. https://doi.org/10.1016/j.cogpsych.2019.101263
Sheskin, M., Scott, K., Mills, C. M., Bergelson, E., Bonawitz, E., Spelke, E. S., Fei-Fei, L., Keil, F. C., Gweon, H., Tenenbaum, J. B., Jara-Ettinger, J., Adolph, K. E., Rhodes, M., Frank, M. C., Mehr, S. A., & Schulz, L. (2020). Online developmental science to foster innovation, access, and impact. Trends in Cognitive Sciences, 24(9), 675–678. https://doi.org/10.1016/j.tics.2020.06.004
Siegler, R.S. and Ramani, G.B. (2008), Playing linear numerical board games promotes low-income children's numerical development. Developmental Science, 11: 655-661. https://doi.org/10.1111/j.1467-7687.2008.00714.x
Sophian, C., Harley, H., & Manos Martin, C. S. (1995). Relational and representational aspects of early number development. Cognition and Instruction, 13(2), 253–268. https://doi.org/10.1207/s1532690xci1302_4
Spaepen, E., Gunderson, E., Gibson, D., Goldin-Meadow, S., & Levine, S. (2018). Meaning before order: Cardinal principle knowledge predicts improvement in understanding the successor principle and exact ordering. Cognition, 180, 59-81. https://doi.org/10.1016/j.cognition.2018.06.012
Zúñiga, M. (2014). El aprendizaje de la descomposición aditiva en la Educación Infantil: Una propuesta para niños y niñas de 5 y 6 años. Edma 0-6: Educación Matemática en la Infancia, 3(2), 84-113. https://revistas.uva.es/index.php/edmain/article/view/5842/4361
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
The RCP is published under the Creative Commons license and can be copied and reproduced according to the conditions of this license (http://creativecommons.org/licenses/by-nc-nd/2.5). RCP articles are available online at https://revistas.unal.edu.co/index.php/psicologia/issue/archive. If you would like to subscribe to the RCP as reader, please go to https://revistas.unal.edu.co/index.php/psicologia/information/readers and follow the instructions mentioned in the webpage. Additionally, a limited number of print journals are available upon request. To request print copies, please email revpsico_fchbog@unal.edu.co.