Publicado

1999-01-01

Non-commutative reduction rings

Palabras clave:

Reduction rings, Gröbner bases, non-commutative rings, standard ring constructions (es)

Descargas

Autores/as

  • Klaus Madlener Universität Kaiserslautern
  • Birgit Reinert Universität Kaiserslautern

Reduction relations are means to express congruences on rings. In the special case of congruences induced by ideals in commutative polynomial rings, the powerful tool of Grabner bases can be characterized by properties of reduction relations associated with ideal bases. Hence, reduction rings can be seen as rings with reduction relations associated to subsets of the ring such that every finitely generated ideal has a finite Gröbner basis. This paper gives an axiomatic framework for studying reduction rings including non-commutative rings and explores when and how the property of being a reduction ring is preserved by standard ring constructions such as quotients and sums of reduction rings, as well as extensions to polynomial and monoid rings over reduction rings.

Moreover, it is outlined when such reduction rings are effective

Cómo citar

APA

Madlener, K. y Reinert, B. (1999). Non-commutative reduction rings. Revista Colombiana de Matemáticas, 33(1), 27–49. https://revistas.unal.edu.co/index.php/recolma/article/view/33745

ACM

[1]
Madlener, K. y Reinert, B. 1999. Non-commutative reduction rings. Revista Colombiana de Matemáticas. 33, 1 (ene. 1999), 27–49.

ACS

(1)
Madlener, K.; Reinert, B. Non-commutative reduction rings. rev.colomb.mat 1999, 33, 27-49.

ABNT

MADLENER, K.; REINERT, B. Non-commutative reduction rings. Revista Colombiana de Matemáticas, [S. l.], v. 33, n. 1, p. 27–49, 1999. Disponível em: https://revistas.unal.edu.co/index.php/recolma/article/view/33745. Acesso em: 22 ene. 2025.

Chicago

Madlener, Klaus, y Birgit Reinert. 1999. «Non-commutative reduction rings». Revista Colombiana De Matemáticas 33 (1):27-49. https://revistas.unal.edu.co/index.php/recolma/article/view/33745.

Harvard

Madlener, K. y Reinert, B. (1999) «Non-commutative reduction rings», Revista Colombiana de Matemáticas, 33(1), pp. 27–49. Disponible en: https://revistas.unal.edu.co/index.php/recolma/article/view/33745 (Accedido: 22 enero 2025).

IEEE

[1]
K. Madlener y B. Reinert, «Non-commutative reduction rings», rev.colomb.mat, vol. 33, n.º 1, pp. 27–49, ene. 1999.

MLA

Madlener, K., y B. Reinert. «Non-commutative reduction rings». Revista Colombiana de Matemáticas, vol. 33, n.º 1, enero de 1999, pp. 27-49, https://revistas.unal.edu.co/index.php/recolma/article/view/33745.

Turabian

Madlener, Klaus, y Birgit Reinert. «Non-commutative reduction rings». Revista Colombiana de Matemáticas 33, no. 1 (enero 1, 1999): 27–49. Accedido enero 22, 2025. https://revistas.unal.edu.co/index.php/recolma/article/view/33745.

Vancouver

1.
Madlener K, Reinert B. Non-commutative reduction rings. rev.colomb.mat [Internet]. 1 de enero de 1999 [citado 22 de enero de 2025];33(1):27-49. Disponible en: https://revistas.unal.edu.co/index.php/recolma/article/view/33745

Descargar cita

Visitas a la página del resumen del artículo

167

Descargas

Los datos de descargas todavía no están disponibles.