Existencia de una solución débil entrópica para un sistema de tipo Keyfitz-Kranzer simétrico
Existence of Weak Entropy Solution for a Symmetric System of Keyfitz-Kranzer Type
Palabras clave:
Sistema de tipo Keyfitz-Kranzer, existencia, solución débil entrópica (es)System of Keyfitz-Kranzer type, Existence, Weak entropy solution (en)
Descargas
1Universidad Nacional de Colombia, Bogotá, Colombia. Email: jchernandezri@unal.edu.co
We consider the Cauchy problem for a 2\times2 symmetric system of Keyfitz-Kranzer type with bounded measurable initial data. The existence of a weak entropy solution to this system is proved by using classical viscosity, an estimate in L1(R) related to one of the Riemann invariants and the div-curl lemma, but avoiding the use of Young measures.
Key words: System of Keyfitz-Kranzer type, Existence, Weak entropy solution.
2000 Mathematics Subject Classification: 35D05, 35L65.
Consideramos el problema de Cauchy para un sistema 2\times2 de tipo Keyfitz-Kranzer simétrico con valor inicial acotado y medible. La existencia de una solución débil entrópica para este sistema es probada mediante el uso de viscosidad clásica, una L1(R) estimativa relacionada con uno de los invariantes de Riemann y el lema del divergente-rotacional, pero evitando el uso de medidas de Young.
Palabras clave: Sistema de tipo Keyfitz-Kranzer, existencia, solución débil entrópica.
Texto completo disponible en PDF
References
[1] G. Q. Chen, 'Hyperbolic System of Conservation Laws with a Symmetry', Commun. PDE 16, (1991), 1461-1487.
[2] H. Freisthuhler, 'On the Cauchy Problem for a Class of Hyperbolic Systems of Conservation Laws', J. Diff. Eqs. 112, (1994), 170-178.
[3] F. James, Y. J. Peng, and B. Perthame, 'Kinetic Formulation for Chromatography and some other Hyperbolic Systems', J. Math. Pure Appl. 74, (1995), 367-385.
[4] A. Kearsley and A. Reiff, 'Existence of weak Solutions to a Class of Nonstrictly Hyperbolic Conservation laws with Non-Interacting Waves', Pacific J. of Math. 205, (2002), 153-170.
[5] B. Keyfitz and H. Kranzer, 'A System of Non-Strictly Hyperbolic Conservation laws Arising in Elasticity', Arch. Rat. Mech. Anal. 72, (1980), 219-241.
[6] P. D. Lax, Hyperbolic Systems of Conservation laws and the Mathematical Theory of Shock Waves, CBMS Regional Conf. Ser. Appl. Math., 11 SIAM, 1973.
[7] T. P. Liu and J. H. Wang, 'On a Hyperbolic System of Conservation laws which is not Strictly Hyperbolic', J. Diff. Eqs. 57, (1985), 1-14.
[8] Y. G. Lu, Hyperbolic Conservations Laws and the Compensated Compactness Method, Chapman and Hall, New York, USA, 2002.
[9] Y. G. Lu, 'Some Results on General System of Isentropic Gas Dynamics', Differential Equations 43, (2007), 130-138.
[10] F. Murat, 'L'injection du cône positif de H-1 dans W-1,q est compacte pour tout q<2', J. Math. Pures Appl. 60, (1981), 309-322.
[11] H. F. Neto, Compacidade compensada aplicada ás leis de conservação, Instituto De Matemática Pura E Aplicada, 1993.
[12] E. Y. Panov, 'On the Theory of Generalized Entropy Solutions of the Cauchy Problem for a Class of Non-Strictly Hyperbolic Systems of Conservation Laws', Sbornik: Mathematics 191, (2000), 121-150.
[13] E. Y. Panov, 'On Infinite-Dimensional Keyfitz-Kranzer Systems of Conservation Laws', Differential Equations 45, (2009), 274-278.
[14] Yue-Jun Peng, 'Euler-Lagrange Change of Variables in Conservation Laws and Applications', Nonlinearity 20, (2007), 1927-1953.
[15] R. J. D. Perna, 'Convergence of the Viscosity Method for Isentropic Gas Dynamics', Comm. Math. Phys. 91, (1983), 1-30.
[16] B. Perthame, Kinetic Formulation of Conservation Laws, Oxford University Press, 2002.
[17] M. Rascle, 'Un résultat de compacité par compensation a coefficients variables', Note aux CRAS Paris 308, (1986), 311-314.
[18] D. Serre, 'Solutions à variations bornées pour certains systèmes hyperboliques de lois de conservation', J. Diff. Eqs. 68, (1987), 137-168.
[19] L. Tartar, 'The Compensated Compactness Method Applied to Systems of Conservation Laws', J. M. Ball ed., Systems of Nonlinear P. D. E., (1986), 263-285.
Este artículo se puede citar en LaTeX utilizando la siguiente referencia bibliográfica de BibTeX:
@ARTICLE{RCMv47n1a02,
AUTHOR = {Hernández R., Juan Carlos},
TITLE = {{Existence of Weak Entropy Solution for a Symmetric System of Keyfitz-Kranzer Type}},
JOURNAL = {Revista Colombiana de Matemáticas},
YEAR = {2013},
volume = {47},
number = {1},
pages = {13--28}
}
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
Visitas a la página del resumen del artículo
Descargas
Licencia
Derechos de autor 2013 Revista Colombiana de Matemáticas
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.