Publicado
On the Connectedness of the Spectrum of Forcing Algebras
Sobre la conexidad del espectro de álgebras de forzado
DOI:
https://doi.org/10.15446/recolma.v48n1.45192Palabras clave:
Forcing algebra, Connectedness, Integral closure (en)Álgebra de forzado, conexidad, clausura entera (es)
Descargas
1Universität Osnabrück, Osnabrück, Germany. Email: hbrenner@uos.de
2Universität Osnabrück, Osnabrück, Germany. Email: dagomez1982@yahoo.com
We study the connectedness property of the spectrum of forcing algebras over a noetherian ring. In particular we present for an integral base ring a geometric criterion for connectedness in terms of horizontal and vertical components of the forcing algebra. This criterion allows further simplifications when the base ring is local, or one--dimensional, or factorial. Besides, we discuss whether the connectedness of forcing algebras is a local property. Finally, we present a characterization of the integral closure of an ideal by means of the universal connectedness of the corresponding forcing morphism.
Key words: Forcing algebra, Connectedness, Integral closure.
2000 Mathematics Subject Classification: 13B22, 14A15, 14R25, 54D05.
Estudiamos la conexidad del espectro de álgebras de forzado sobre anillo noetherianos. En particular, presentamos un criterio de conexidad cuando el anillo base es un dominio en términos de las componentes verticales y horizontales del álgebra de forzado. Este criterio nos permite obtener simplificaciones en el caso en el que el anillo base es local, o 1--dimensional o un dominio de factorización única. Además, discutimos sobre si la conexidad de las álgebras de forzado es una propiedad local. Finalmente, presentamos una caracterización de pertenencia a la clausura entera de un ideal en términos de la conexidad universal del correspondiente morfismo de forzado.
Palabras clave: Álgebra de forzado, conexidad, clausura entera.
Texto completo disponible en PDF
References
[1] H. Brenner, Tight Closure and Vector Bundles, `Three Lectures on Commutative Algebra', (2008), Vol. 42 of University Lecture Series, AMS, p. 1-71.
[2] H. Brenner, Forcing Algebras, Syzygy Bundles, and Tight Closure, `Commutative Algebra. Noetherian and non-Noetherian Perspectives', (2011), Springer.
[3] H. Brenner, `Some Remarks on the Affineness of A1-Bundles', ArXiv, (2012).
[4] D. Eisenbud, Commutative Algebra with a View Toward Algebraic Geometry, Springer-Verlag, New York, USA, 1995.
[5] D. d. J. Gomez Ramirez, Homological Conjectures, Closure Operations, Vector Bundles and Forcing Algebras, PhD thesis, Universidad Nacional de Colombia with cooperation of the University of Osnabrück, 2013.
[6] A. Grothendieck, Revêtements étales et groupe fondamental (SGA 1), `Lecture Notes in Mathematics', (1971), Vol. 224, Springer-Verlag, Berlin, Germany.
[7] R. Hartshorne, Algebraic Geometry, Springer, New York, USA, 1977.
[8] M. Hochster, `Solid closure', Contemp. Math. 159, (1994), 103-172.
[9] C. Huneke and I. Swanson, Integral Closure of Ideals, Rings, and Modules, Vol. LMS 336, Cambridge University Press, Cambridge, USA, 2006.
Este artículo se puede citar en LaTeX utilizando la siguiente referencia bibliográfica de BibTeX:
@ARTICLE{RCMv48n1a01,
AUTHOR = {Brenner, Holger and Gómez-Ramírez, Danny de Jesús},
TITLE = {{On the Connectedness of the Spectrum of Forcing Algebras}},
JOURNAL = {Revista Colombiana de Matemáticas},
YEAR = {2014},
volume = {48},
number = {1},
pages = {1--19}
}
Referencias
H. Brenner, Tight Closure and Vector Bundles, 'Three Lectures on Commutative Algebra', (2008), Vol. 42 of University Lecture Series, AMS, p. 1-71.
H. Brenner, Forcing Algebras, Syzygy Bundles, and Tight Closure, 'Commutative Algebra. Noetherian and non-Noetherian Perspectives', (2011), Springer.
H. Brenner, 'Some Remarks on the Affineness of A1-Bundles', ArXiv, (2012).
D. Eisenbud, Commutative Algebra with a View Toward Algebraic Geometry, Springer-Verlag, New York, USA, 1995.
D. d. J. Gomez Ramirez, Homological Conjectures, Closure Operations, Vector Bundles and Forcing Algebras, PhD thesis, Universidad Nacional de Colombia with cooperation of the University of Osnabrück, 2013.
A. Grothendieck, Revêtements étales et groupe fondamental (SGA 1), 'Lecture Notes in Mathematics', (1971), Vol. 224, Springer-Verlag, Berlin, Germany.
R. Hartshorne, Algebraic Geometry, Springer, New York, USA, 1977.
M. Hochster, 'Solid closure', Contemp. Math. 159, (1994), 103-172.
C. Huneke and I. Swanson, Integral Closure of Ideals, Rings, and Modules, Vol. LMS 336, Cambridge University Press, Cambridge, USA, 2006.
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
CrossRef Cited-by
1. Holger Brenner, Danny de Jesús Gómez-Ramírez. (2016). Normality and Related Properties of Forcing Algebras. Communications in Algebra, 44(11), p.4769. https://doi.org/10.1080/00927872.2015.1113291.
2. Danny A. J. Gómez Ramírez. (2020). Artificial Mathematical Intelligence. , p.165. https://doi.org/10.1007/978-3-030-50273-7_10.
Dimensions
PlumX
Visitas a la página del resumen del artículo
Descargas
Licencia
Derechos de autor 2014 Revista Colombiana de Matemáticas
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.