Publicado

2003-01-01

Nontrivial solitary waves of GKP equation in multi-dimensional spaces

Palabras clave:

Mountain Pass Lemma, Solitary wave, Generalized Kadomtsev-Petviashvili equation, 2000 Mathematics Subject Classification, Primary: 35J60 (en)

Descargas

Autores/as

  • Benjin Xuan University of Science and Technology of China Anhui

Abstract. In this paper, using the Mountain Pass Lemma without (PS) condition due to Ambrosetti and Rabinowitz, we obtain the existence of the nontrivial solitary waves of Generalized Kadomtsev-Petviashvili equation in multidimensional spaces and for superlinear nonlinear term f(u) which satisfies some growth condition. By the Pohozaev type variational identity, we obtain the nonexistence of the nontrivial solitary waves for power function nonlinear case, i.e. f(u) = up where p ≥ 2(2n — 1)/(2n — 3).

Referencias

A. Ambrosetti & P. H. Rabinowitz, Dual variational methods in critical point theory arid applications, J. Funct. Anal., 1 4 (1973), 49 -38 1.

O. V. Besov, V. P. Ilin & S. M. Nikolskii, Integral Representations of Functions and Imbeddings Theorems, Vol.I, J. Wiley, 1978.

J. Bourgain, On the Cauchy problem for the Kadomtsev-Petxnashmli equation, Geometric and Functional Analysis, 4 (1993), 315 - 341.

A. De Bouard & J. C Saut, Sur les ondes solitarires des equations de Kadomtsev-Petviashmli, C. R. Acad. Sciences Paris, 3 2 0 (1995), 315 -328.

A. De Bouard & J. C. Saut, Solitary waves of generalized Kadomtsev-Petviashvili equations, Ann. Inst. H. Poincare Anal. Non Lineaire, 14 (1997), 211-236.

P. Isaza & J. Mejia, Local and Global Cauchy problem for the Kadomtsev-Petviashvili equation in antisotropic Sobolev spaces with negative indices, Comm, in P. D. E., 26 (2001), 1027 -1054.

M. Willem, Minimax Theorems, Birkhauser, Boston-Basel-Berlin, 1996.

Cómo citar

APA

Xuan, B. (2003). Nontrivial solitary waves of GKP equation in multi-dimensional spaces. Revista Colombiana de Matemáticas, 37(1), 11–23. https://revistas.unal.edu.co/index.php/recolma/article/view/94271

ACM

[1]
Xuan, B. 2003. Nontrivial solitary waves of GKP equation in multi-dimensional spaces. Revista Colombiana de Matemáticas. 37, 1 (ene. 2003), 11–23.

ACS

(1)
Xuan, B. Nontrivial solitary waves of GKP equation in multi-dimensional spaces. rev.colomb.mat 2003, 37, 11-23.

ABNT

XUAN, B. Nontrivial solitary waves of GKP equation in multi-dimensional spaces. Revista Colombiana de Matemáticas, [S. l.], v. 37, n. 1, p. 11–23, 2003. Disponível em: https://revistas.unal.edu.co/index.php/recolma/article/view/94271. Acesso em: 22 ene. 2025.

Chicago

Xuan, Benjin. 2003. «Nontrivial solitary waves of GKP equation in multi-dimensional spaces». Revista Colombiana De Matemáticas 37 (1):11-23. https://revistas.unal.edu.co/index.php/recolma/article/view/94271.

Harvard

Xuan, B. (2003) «Nontrivial solitary waves of GKP equation in multi-dimensional spaces», Revista Colombiana de Matemáticas, 37(1), pp. 11–23. Disponible en: https://revistas.unal.edu.co/index.php/recolma/article/view/94271 (Accedido: 22 enero 2025).

IEEE

[1]
B. Xuan, «Nontrivial solitary waves of GKP equation in multi-dimensional spaces», rev.colomb.mat, vol. 37, n.º 1, pp. 11–23, ene. 2003.

MLA

Xuan, B. «Nontrivial solitary waves of GKP equation in multi-dimensional spaces». Revista Colombiana de Matemáticas, vol. 37, n.º 1, enero de 2003, pp. 11-23, https://revistas.unal.edu.co/index.php/recolma/article/view/94271.

Turabian

Xuan, Benjin. «Nontrivial solitary waves of GKP equation in multi-dimensional spaces». Revista Colombiana de Matemáticas 37, no. 1 (enero 1, 2003): 11–23. Accedido enero 22, 2025. https://revistas.unal.edu.co/index.php/recolma/article/view/94271.

Vancouver

1.
Xuan B. Nontrivial solitary waves of GKP equation in multi-dimensional spaces. rev.colomb.mat [Internet]. 1 de enero de 2003 [citado 22 de enero de 2025];37(1):11-23. Disponible en: https://revistas.unal.edu.co/index.php/recolma/article/view/94271

Descargar cita

Visitas a la página del resumen del artículo

86

Descargas

Los datos de descargas todavía no están disponibles.