Corchete y curvatura
Palabras clave:
Lie Bracket, Curvature tensor, Affine connection, 2000 Mathematics Subject Classification, Primary: 53B20, Secondary: 53B21 (es)Descargas
La primera parte del artículo presenta al corchete de Lie asociado al problema de la comutatividad de dos flujos. En la segunda parte se introducen
las definiciones básicas de conexión y curvatura en fibrados vectoriales, subrayando la relación corchete-curvatura. Finalmente, usando conexiones afines
localmente definidas, se da una demostración original y sencilla de un teorema de Eugenio Beltrami. Este artículo apunta a un lector no especialista (e.g. un
estudiante de doctorado en matemática o física, etc) en geometría diferencial local.
Referencias
[BCO] J. Berndt, S. Console and C. Olmos, Submanifolds and Holonomy (Research Notes in Mathematics Series), Chapman & Hall/CRC, Boca Raton, 2003.
[Bel] E. Beltrami, Resoluzione del problema: riportari i punti di una superficie sopra un piano in modo che le linee geodetiche vengano rappresentate da linee rette, Ann. Mat. 1, no. 7 (1865), 185-204.
[Ber] M. Berger, A Panoramic View of Riemannian Geometry, Springer-Verlag, Berlin, 2003.
[Car] E. Cartan, Leçons sur la Géométrie des Espaces de Riemann, Gauthier-Villars, Paris, 1928.
[ChEb] J. Cheegerand D. Ebin, Comparison Theorems in Riemannian Geometry, North-Holland Pub. Co., Amsterdam, 1975.
[DiS] A. J. Di Scala, On an assertion in Riemann’s Habilitationsvortrag, Enseign. Math. 47 no. 1-2 (2001), 57-63.
[Eis] L. P. Eisenhart, Riemannian Geometry, 2ed, Princeton University Press, Princeton, 1949.
[KNI] S. Kobayashi And K. Nomizu, Foundations of differential geometry, Vol. 1 , Interscience Publishers, New York, 1963.
[HeLi] E. Heintze And X. Liu, Homogeneity of infinite dimensional isoparametric submanifolds, Ann. of Math. 149 no. 1 (1999), 149-181.
[Mat] V. S. Matveev, Geometric explanation of the Beltrami Theorem, Internet (2003).
[MoOl] B. Molina and C. Olmos, Manifolds all of whose flats are closed, J. Differential Geom. 45 no. 3 (1997), 575-592.
[Mil] J. Milnor, On the existence of a connection with curvature zero, Comment. Math. Helv. 3 2 (1958), 215-223.
[Olm] C. Olmos, A geometric proof of Berger holonom y theorem, Ann. of Math. 161 no. 1 (2005), 579-588.
[Sp2] M. Spivak, A comprehensive Introduction to Differential Geometry, Vol. 2, 2nd ed, Perish, Inc., Berkeley, California, 1979
[Sp3] M. Spivak, A comprehensive Introduction to Differential Geometry, Vol. 3, 2nd ed, Publish or Perish, Inc., Berkeley, California, 1979.
[Ste] P. Stefan, Accessible sets, orbits, and foliations with singularities, Proc. London Math. Soc. 29 (1974), 699-713.
[Zeg] A. Zeghib, Remarks on Lorentz symmetric spaces, Compositio Math., 140 (2004), 1675-1678.