Soluciones simétricas de algunos problemas elípticos
Schlagworte:
Bounded domain, soft limit, derivative, continuous function, hyperplane (es)Downloads
In this paper we study solutions to the Neumann problem
(I) ∆u= F(u) in Ω,
∂u/∂n = G(u) on Ω,
and the Dirichlet problema
(II) ∆u=F(u) in Ω,
u=c n ∂Ω
where Ω is a bounded domain in Rn with a smooth boundary ∂ Ω ∂/ ∂n is the derivative with respect to the outward normal n and c ϵ R. If Ω is the unit ball and if either F(t) = f(t) and G(t) = g(t) or F(t) = /(t) . t and G(t) = 9(t) . t where f is a strictly increasing continuous function and g is a strictly decreasing continuous function, we prove that solutions to problems (I) and (II) are radially symmetric about the origen. If Ω is the unit ball and F is a continuous function that does not change sign, we prove that solutions of (II) are radially symmetric about the origen. If Ω ⊂ Rn is a symmetric bounded domain with respect to a hyperplane T and f ϵ C(Ω x R,R), g ϵC (∂Ω x R, R) are functions that satisfy the same monoton..icity properties in the second variable as before, then we prove that solutions are symmetric with respect to the hyperplane T. If F satisfies the same condition as in the first case and G ≡ 0, we prove that the only solutions of (I) are constant functions. Furthermore, we find a formula for solutions of (I) in the unitary ball that allow us to deduce some non-existence results. We find conditions on F and G in order for (I) to have no solutions in any bounded domain.
Zitationsvorschlag
APA
Quintero H., J. R. (1993). Soluciones simétricas de algunos problemas elípticos. Revista Colombiana de Matemáticas, 27(1-2), 95–109. https://revistas.unal.edu.co/index.php/recolma/article/view/33579
ACM
[1]
Quintero H., J.R. 1993. Soluciones simétricas de algunos problemas elípticos. Revista Colombiana de Matemáticas. 27, 1-2 (Jan. 1993), 95–109.
ACS
(1)
Quintero H., J. R. Soluciones simétricas de algunos problemas elípticos. rev.colomb.mat 1993, 27, 95-109.
ABNT
QUINTERO H., J. R. Soluciones simétricas de algunos problemas elípticos. Revista Colombiana de Matemáticas, [S. l.], v. 27, n. 1-2, p. 95–109, 1993. Disponível em: https://revistas.unal.edu.co/index.php/recolma/article/view/33579. Acesso em: 2 feb. 2025.
Chicago
Quintero H., José Raúl. 1993. „Soluciones simétricas de algunos problemas elípticos“. Revista Colombiana De Matemáticas 27 (1-2):95-109. https://revistas.unal.edu.co/index.php/recolma/article/view/33579.
Harvard
Quintero H., J. R. (1993) „Soluciones simétricas de algunos problemas elípticos“, Revista Colombiana de Matemáticas, 27(1-2), S. 95–109. Verfügbar unter: https://revistas.unal.edu.co/index.php/recolma/article/view/33579 (Zugegriffen: 2 Februar 2025).
IEEE
[1]
J. R. Quintero H., „Soluciones simétricas de algunos problemas elípticos“, rev.colomb.mat, Bd. 27, Nr. 1-2, S. 95–109, Jan. 1993.
MLA
Quintero H., J. R. „Soluciones simétricas de algunos problemas elípticos“. Revista Colombiana de Matemáticas, Bd. 27, Nr. 1-2, Januar 1993, S. 95-109, https://revistas.unal.edu.co/index.php/recolma/article/view/33579.
Turabian
Quintero H., José Raúl. „Soluciones simétricas de algunos problemas elípticos“. Revista Colombiana de Matemáticas 27, no. 1-2 (Januar 1, 1993): 95–109. Zugegriffen Februar 2, 2025. https://revistas.unal.edu.co/index.php/recolma/article/view/33579.
Vancouver
1.
Quintero H. JR. Soluciones simétricas de algunos problemas elípticos. rev.colomb.mat [Internet]. 1. Januar 1993 [zitiert 2. Februar 2025];27(1-2):95-109. Verfügbar unter: https://revistas.unal.edu.co/index.php/recolma/article/view/33579
Bibliografische Angaben herunterladen
Aufrufe der Abstractseiten von Artikeln
175
Downloads
Keine Nutzungsdaten vorhanden.
Lizenz
Copyright (c) 1993 Revista Colombiana de Matemáticas
Dieses Werk steht unter der Lizenz Creative Commons Namensnennung 4.0 International.