Pubblicato

1993-01-01

Soluciones simétricas de algunos problemas elípticos

Parole chiave:

Bounded domain, soft limit, derivative, continuous function, hyperplane (es)

##submission.downloads##

Autori

  • José Raúl Quintero H. Universidad del Valle

In this paper we study solutions to the Neumann problem

(I)         ∆u=  F(u)   in Ω,

   ∂u/∂n =  G(u)  on Ω,                                               

and the Dirichlet problema

     (II)    ∆u=F(u)   in  Ω,

              u=c        n  ∂Ω      

where Ω is a bounded domain in Rn with a smooth boundary ∂ Ω  ∂/ ∂n is the derivative with respect to the outward normal n and c ϵ R. If  Ω is the unit ball and if either F(t) = f(t) and G(t) = g(t) or F(t) = /(t) . t and G(t) = 9(t) . t where f is a strictly increasing continuous function and  g is a strictly decreasing continuous function, we prove that solutions to problems (I) and (II) are radially symmetric about the origen. If Ω  is the unit ball and F is a continuous function that does not change sign, we prove that solutions of (II) are radially symmetric about the origen. If Ω ⊂ Rn  is a symmetric bounded domain with respect to a hyperplane T and f ϵ C(Ω x R,R), g ϵC (∂Ω x R, R) are functions that satisfy the same monoton..icity properties in the second variable as before, then we prove that solutions are symmetric with respect to the hyperplane T. If F satisfies the same condition as in the first case and G ≡ 0, we prove that the only solutions of (I) are constant functions. Furthermore, we find a formula for solutions of (I) in the unitary ball that allow us to deduce some non-existence results. We find conditions on F and G in order for (I) to have no solutions in any bounded domain.

 

 

 

 

 

 

Come citare

APA

Quintero H., J. R. (1993). Soluciones simétricas de algunos problemas elípticos. Revista Colombiana de Matemáticas, 27(1-2), 95–109. https://revistas.unal.edu.co/index.php/recolma/article/view/33579

ACM

[1]
Quintero H., J.R. 1993. Soluciones simétricas de algunos problemas elípticos. Revista Colombiana de Matemáticas. 27, 1-2 (gen. 1993), 95–109.

ACS

(1)
Quintero H., J. R. Soluciones simétricas de algunos problemas elípticos. rev.colomb.mat 1993, 27, 95-109.

ABNT

QUINTERO H., J. R. Soluciones simétricas de algunos problemas elípticos. Revista Colombiana de Matemáticas, [S. l.], v. 27, n. 1-2, p. 95–109, 1993. Disponível em: https://revistas.unal.edu.co/index.php/recolma/article/view/33579. Acesso em: 22 gen. 2025.

Chicago

Quintero H., José Raúl. 1993. «Soluciones simétricas de algunos problemas elípticos». Revista Colombiana De Matemáticas 27 (1-2):95-109. https://revistas.unal.edu.co/index.php/recolma/article/view/33579.

Harvard

Quintero H., J. R. (1993) «Soluciones simétricas de algunos problemas elípticos», Revista Colombiana de Matemáticas, 27(1-2), pagg. 95–109. Available at: https://revistas.unal.edu.co/index.php/recolma/article/view/33579 (Consultato: 22 gennaio 2025).

IEEE

[1]
J. R. Quintero H., «Soluciones simétricas de algunos problemas elípticos», rev.colomb.mat, vol. 27, n. 1-2, pagg. 95–109, gen. 1993.

MLA

Quintero H., J. R. «Soluciones simétricas de algunos problemas elípticos». Revista Colombiana de Matemáticas, vol. 27, n. 1-2, gennaio 1993, pagg. 95-109, https://revistas.unal.edu.co/index.php/recolma/article/view/33579.

Turabian

Quintero H., José Raúl. «Soluciones simétricas de algunos problemas elípticos». Revista Colombiana de Matemáticas 27, no. 1-2 (gennaio 1, 1993): 95–109. Consultato gennaio 22, 2025. https://revistas.unal.edu.co/index.php/recolma/article/view/33579.

Vancouver

1.
Quintero H. JR. Soluciones simétricas de algunos problemas elípticos. rev.colomb.mat [Internet]. 1 gennaio 1993 [citato 22 gennaio 2025];27(1-2):95-109. Available at: https://revistas.unal.edu.co/index.php/recolma/article/view/33579

Scarica citazione

Viste delle pagine degli abstract

175

Downloads

I dati di download non sono ancora disponibili.