Published

1993-01-01

Soluciones simétricas de algunos problemas elípticos

Keywords:

Bounded domain, soft limit, derivative, continuous function, hyperplane (es)

Authors

  • José Raúl Quintero H. Universidad del Valle

In this paper we study solutions to the Neumann problem

(I)         ∆u=  F(u)   in Ω,

   ∂u/∂n =  G(u)  on Ω,                                               

and the Dirichlet problema

     (II)    ∆u=F(u)   in  Ω,

              u=c        n  ∂Ω      

where Ω is a bounded domain in Rn with a smooth boundary ∂ Ω  ∂/ ∂n is the derivative with respect to the outward normal n and c ϵ R. If  Ω is the unit ball and if either F(t) = f(t) and G(t) = g(t) or F(t) = /(t) . t and G(t) = 9(t) . t where f is a strictly increasing continuous function and  g is a strictly decreasing continuous function, we prove that solutions to problems (I) and (II) are radially symmetric about the origen. If Ω  is the unit ball and F is a continuous function that does not change sign, we prove that solutions of (II) are radially symmetric about the origen. If Ω ⊂ Rn  is a symmetric bounded domain with respect to a hyperplane T and f ϵ C(Ω x R,R), g ϵC (∂Ω x R, R) are functions that satisfy the same monoton..icity properties in the second variable as before, then we prove that solutions are symmetric with respect to the hyperplane T. If F satisfies the same condition as in the first case and G ≡ 0, we prove that the only solutions of (I) are constant functions. Furthermore, we find a formula for solutions of (I) in the unitary ball that allow us to deduce some non-existence results. We find conditions on F and G in order for (I) to have no solutions in any bounded domain.

 

 

 

 

 

 

How to Cite

APA

Quintero H., J. R. (1993). Soluciones simétricas de algunos problemas elípticos. Revista Colombiana de Matemáticas, 27(1-2), 95–109. https://revistas.unal.edu.co/index.php/recolma/article/view/33579

ACM

[1]
Quintero H., J.R. 1993. Soluciones simétricas de algunos problemas elípticos. Revista Colombiana de Matemáticas. 27, 1-2 (Jan. 1993), 95–109.

ACS

(1)
Quintero H., J. R. Soluciones simétricas de algunos problemas elípticos. rev.colomb.mat 1993, 27, 95-109.

ABNT

QUINTERO H., J. R. Soluciones simétricas de algunos problemas elípticos. Revista Colombiana de Matemáticas, [S. l.], v. 27, n. 1-2, p. 95–109, 1993. Disponível em: https://revistas.unal.edu.co/index.php/recolma/article/view/33579. Acesso em: 22 jan. 2025.

Chicago

Quintero H., José Raúl. 1993. “Soluciones simétricas de algunos problemas elípticos”. Revista Colombiana De Matemáticas 27 (1-2):95-109. https://revistas.unal.edu.co/index.php/recolma/article/view/33579.

Harvard

Quintero H., J. R. (1993) “Soluciones simétricas de algunos problemas elípticos”, Revista Colombiana de Matemáticas, 27(1-2), pp. 95–109. Available at: https://revistas.unal.edu.co/index.php/recolma/article/view/33579 (Accessed: 22 January 2025).

IEEE

[1]
J. R. Quintero H., “Soluciones simétricas de algunos problemas elípticos”, rev.colomb.mat, vol. 27, no. 1-2, pp. 95–109, Jan. 1993.

MLA

Quintero H., J. R. “Soluciones simétricas de algunos problemas elípticos”. Revista Colombiana de Matemáticas, vol. 27, no. 1-2, Jan. 1993, pp. 95-109, https://revistas.unal.edu.co/index.php/recolma/article/view/33579.

Turabian

Quintero H., José Raúl. “Soluciones simétricas de algunos problemas elípticos”. Revista Colombiana de Matemáticas 27, no. 1-2 (January 1, 1993): 95–109. Accessed January 22, 2025. https://revistas.unal.edu.co/index.php/recolma/article/view/33579.

Vancouver

1.
Quintero H. JR. Soluciones simétricas de algunos problemas elípticos. rev.colomb.mat [Internet]. 1993 Jan. 1 [cited 2025 Jan. 22];27(1-2):95-109. Available from: https://revistas.unal.edu.co/index.php/recolma/article/view/33579

Download Citation

Article abstract page views

175

Downloads

Download data is not yet available.