On ultra-products of some families of composition operators between certain finite dimensional ℓp spaces
Schlagworte:
ultra-products of spaces and maps (es)Downloads
Let 0 < σ < 1 and 1 < p, r < ∞ be such that 1/r + (1- σ)/p' = 1. We show that for every continuous linear map T between Banach spaces E, F such that its restriction to every finite dimensional subspace N of E factorizes through a chain of type
ℓ∞ (ΩN,μN) → ℓr ∞ (ΩN,μN) → ℓ 1 (ΩN,μN)+ ℓp((ΩN,μN)
where (ΩN,μN) is a discrete measure space with a finite number of atoms, there
is a σ- finite measure space (Ω, μ) such that T ∈ L(E, F") factorizes through the chain of "continuous spaces
ℓ∞ (ΩN,μN) → ℓr ∞ (ΩN,μN) → ℓ 1 (ΩN,μN)+ ℓp((ΩN,μN)
Zitationsvorschlag
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Bibliografische Angaben herunterladen
Aufrufe der Abstractseiten von Artikeln
Downloads
Lizenz
Copyright (c) 2001 Revista Colombiana de Matemáticas
Dieses Werk steht unter der Lizenz Creative Commons Namensnennung 4.0 International.