On ultra-products of some families of composition operators between certain finite dimensional ℓp spaces
Palabras clave:
ultra-products of spaces and maps (es)Descargas
Let 0 < σ < 1 and 1 < p, r < ∞ be such that 1/r + (1- σ)/p' = 1. We show that for every continuous linear map T between Banach spaces E, F such that its restriction to every finite dimensional subspace N of E factorizes through a chain of type
ℓ∞ (ΩN,μN) → ℓr ∞ (ΩN,μN) → ℓ 1 (ΩN,μN)+ ℓp((ΩN,μN)
where (ΩN,μN) is a discrete measure space with a finite number of atoms, there
is a σ- finite measure space (Ω, μ) such that T ∈ L(E, F") factorizes through the chain of "continuous spaces
ℓ∞ (ΩN,μN) → ℓr ∞ (ΩN,μN) → ℓ 1 (ΩN,μN)+ ℓp((ΩN,μN)
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
Visitas a la página del resumen del artículo
Descargas
Licencia
Derechos de autor 2001 Revista Colombiana de Matemáticas
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.