On ultra-products of some families of composition operators between certain finite dimensional ℓp spaces
Mots-clés :
ultra-products of spaces and maps (es)Téléchargements
Let 0 < σ < 1 and 1 < p, r < ∞ be such that 1/r + (1- σ)/p' = 1. We show that for every continuous linear map T between Banach spaces E, F such that its restriction to every finite dimensional subspace N of E factorizes through a chain of type
ℓ∞ (ΩN,μN) → ℓr ∞ (ΩN,μN) → ℓ 1 (ΩN,μN)+ ℓp((ΩN,μN)
where (ΩN,μN) is a discrete measure space with a finite number of atoms, there
is a σ- finite measure space (Ω, μ) such that T ∈ L(E, F") factorizes through the chain of "continuous spaces
ℓ∞ (ΩN,μN) → ℓr ∞ (ΩN,μN) → ℓ 1 (ΩN,μN)+ ℓp((ΩN,μN)
Comment citer
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Télécharger la référence
Consultations de la page du résumé de l'article
Téléchargements
Licence
© Revista Colombiana de Matemáticas 2001
Cette œuvre est sous licence Creative Commons Attribution 4.0 International.