Veröffentlicht

2017-07-01

Solución numérica de un modelo Black-Scholes no local y no lineal por molificación discreta

Numerical solution of a nonlocal and nonlinear Black-Scholes model by means of discrete mollification

DOI:

https://doi.org/10.15446/recolma.v51n2.70901

Schlagworte:

Ecuación Black-Scholes no local y no lineal, diferencias finitas, molificación discreta (es)
Non local Black-Scholes equation, finite differences, discrete mollification (en)

Autor/innen

  • Harold Contreras Universidad de Sucre
  • Carlos Daniel Acosta Universidad Nacional de Colombia
  • Lorena Aguirre Universidad Nacional de Colombia
En el presente trabajo se presenta el desarrollo numérico para un modelo Blacks-Scholes no lineal y no local utilizando los métodos de diferencias finitas, integración numérica y molificación discreta. De dicho modelo, se analizan las condiciones de estabilidad y convergencia para la discretización propuesta.
In this paper, we study a nonlinear nonlocal Black-Scholes model by means of the methods of finite differences, numerical integration and discrete mollification. In this model, conditions for stability and convergence of the discretization proposed are discussed.

Literaturhinweise

C. D. Acosta, R. Bürger, and C. E. Mejía, Monotone difference schemes

stabilized by discrete mollification for strongly degenerate parabolic equations, Numerical Methods for Partial Differential Equations 28 (2012),

no. 1, 38-62.

C. D. Acosta and C. E. Mejía, Stabilization of explicit methods for convection diffusion equations by discrete mollification, Computers & Mathematics with Applications 55 (2008), no. 3, 368-380.

C. D. Acosta and C. E. Mejía, A mollification based operator splitting method for convection diffusion equations, Computers & mathematics with applications 59 (2010), no. 4, 1397-1408.

C. D. Acosta and C. E. Mejía, Stable computations by discrete mollification, 2014.

C. D. Acosta and F. Osorio, Solución numérica del modelo de black-scholes no local por molificación discreta, Revista Integración (2015)

S. K. Bhowmik, Fast and efficient numerical methods for an extended

black{scholes model, Computers & Mathematics with Applications 67

(2014), no. 3, 636-654.

F. Black and M. Scholes, The pricing of options and corporate liabilities,

The journal of political economy (1973), 637-654.

M. Bogoya and C. A. Gómez, Modelo discreto para una ecuación de difusión no local, Revista Colombiana de Matemáticas 47 (2013), no. 1,

-94.

A.-V. Fuensanta, J. M. Mazón, J. D. Rossi, and J. J. Toledo-Melero, Non-

local diffusion problems, vol. 165, American Mathematical Society, 2010.

L. I. Ignat and J. D. Rossi, A nonlocal convection-diffusion equation, Journal of Functional Analysis 251 (2007), no. 2, 399-437.

C. E. Mejía Salazar et al., Sobre el método de molificación, (2007).

Zitationsvorschlag

APA

Contreras, H., Acosta, C. D. und Aguirre, L. (2017). Solución numérica de un modelo Black-Scholes no local y no lineal por molificación discreta. Revista Colombiana de Matemáticas, 51(2), 195–220. https://doi.org/10.15446/recolma.v51n2.70901

ACM

[1]
Contreras, H., Acosta, C.D. und Aguirre, L. 2017. Solución numérica de un modelo Black-Scholes no local y no lineal por molificación discreta. Revista Colombiana de Matemáticas. 51, 2 (Juli 2017), 195–220. DOI:https://doi.org/10.15446/recolma.v51n2.70901.

ACS

(1)
Contreras, H.; Acosta, C. D.; Aguirre, L. Solución numérica de un modelo Black-Scholes no local y no lineal por molificación discreta. rev.colomb.mat 2017, 51, 195-220.

ABNT

CONTRERAS, H.; ACOSTA, C. D.; AGUIRRE, L. Solución numérica de un modelo Black-Scholes no local y no lineal por molificación discreta. Revista Colombiana de Matemáticas, [S. l.], v. 51, n. 2, p. 195–220, 2017. DOI: 10.15446/recolma.v51n2.70901. Disponível em: https://revistas.unal.edu.co/index.php/recolma/article/view/70901. Acesso em: 22 jan. 2025.

Chicago

Contreras, Harold, Carlos Daniel Acosta, und Lorena Aguirre. 2017. „Solución numérica de un modelo Black-Scholes no local y no lineal por molificación discreta“. Revista Colombiana De Matemáticas 51 (2):195-220. https://doi.org/10.15446/recolma.v51n2.70901.

Harvard

Contreras, H., Acosta, C. D. und Aguirre, L. (2017) „Solución numérica de un modelo Black-Scholes no local y no lineal por molificación discreta“, Revista Colombiana de Matemáticas, 51(2), S. 195–220. doi: 10.15446/recolma.v51n2.70901.

IEEE

[1]
H. Contreras, C. D. Acosta, und L. Aguirre, „Solución numérica de un modelo Black-Scholes no local y no lineal por molificación discreta“, rev.colomb.mat, Bd. 51, Nr. 2, S. 195–220, Juli 2017.

MLA

Contreras, H., C. D. Acosta, und L. Aguirre. „Solución numérica de un modelo Black-Scholes no local y no lineal por molificación discreta“. Revista Colombiana de Matemáticas, Bd. 51, Nr. 2, Juli 2017, S. 195-20, doi:10.15446/recolma.v51n2.70901.

Turabian

Contreras, Harold, Carlos Daniel Acosta, und Lorena Aguirre. „Solución numérica de un modelo Black-Scholes no local y no lineal por molificación discreta“. Revista Colombiana de Matemáticas 51, no. 2 (Juli 1, 2017): 195–220. Zugegriffen Januar 22, 2025. https://revistas.unal.edu.co/index.php/recolma/article/view/70901.

Vancouver

1.
Contreras H, Acosta CD, Aguirre L. Solución numérica de un modelo Black-Scholes no local y no lineal por molificación discreta. rev.colomb.mat [Internet]. 1. Juli 2017 [zitiert 22. Januar 2025];51(2):195-220. Verfügbar unter: https://revistas.unal.edu.co/index.php/recolma/article/view/70901

Bibliografische Angaben herunterladen

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Aufrufe der Abstractseiten von Artikeln

413

Downloads

Keine Nutzungsdaten vorhanden.