Veröffentlicht
The formal derivative operator and multifactorial numbers
El operador derivada formal y números multifactoriales
DOI:
https://doi.org/10.15446/recolma.v53n2.85522Schlagworte:
Context-free grammars, formal derivative operator, multifactorial numbers (en)Gramáticas independiente del contexto, operador derivada formal, números multifactoriales (es)
Downloads
Literaturhinweise
D. Callan, A combinatorial survey of identities for the double factorial, arXiv:0906.1317v1 (2009), 1-29.
D. Callan, S. Ma, and T. Mansour, Some combinatorial arrays related to the Lotka-Volterra system, The Electronic Journal of Combinatorics 22 (2015), no. 2, #22.
C. Chen and K. Kho, Principles and techniques in combinatorics, World Scientific, Singapur, 1992.
W. Chen, Context-free grammars, differential operators and formal power series, Theoretical Computer Science 117 (1993), 113-129.
W. Chen and A. Fu, Context-free grammars for permutations and increasing trees, Advances in Applied Mathematics 82 (2017), 58-82.
D. Dumont, Grammaires de William Chen et dérivations dans les arbres et arborescences, Séminaire Lotharingien de Combinatoire 37 (1996), 1-21, B37a.
D. Dumont and A. Ramamonjisoa, Grammaire de Ramanujan et arbres de Cayley, The Electronic Journal of Combinatorics 3 (1996), no. 2, 1-18, R17.
A. Dzhumadildaeva, Problem 11406, American Mathematical Monthly 116 (2009), no. 1, 82.
H. Gould and J. Quaintance, Double fun with double factorials, Mathematics Magazine 85 (2012), no. 3, 177-192.
R. Hao, L. Wang, and H. Yang, Context-free grammars for triangular arrays, Acta Mathematica Sinica 31 (2015), no. 3, 445-455.
V. Lampret, Approximating real Pochhammer products: a comparison with powers, Central European Journal of Mathematics 7 (2009), no. 3, 493-505.
S. Ma, Some combinatorial arrays generated by context-free grammars, European Journal of Combinatorics 34 (2013), no. 7, 1081-1091.
S. Ma, J. Ma, Y. Yeh, and B. Zhu, Context-free grammars for several polynomials associated with Eulerian polynomials, The Electronic Journal of Combinatorics 25 (2018), no. 1, 1-31.
S. Ma, T. Mansour, and M. Schork, Normal ordering problem and the extensions of the Stirling grammar, Russian Journal of Mathematical Physics 21 (2014), no. 2, 242-255.
S. Ma and Y. Yeh, Eulerian polynomials, Stirling permutations of the second kind and perfect matchings, The Electronic Journal of Combinatorics 24 (2017), no. 4, 4-27.
E. Weisstein, CRC Concise Encylopedia of Mathematics, Chapman & Hall/ CRC, New York, 2002.
Zitationsvorschlag
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Bibliografische Angaben herunterladen
Lizenz
Copyright (c) 2020 Revista Colombiana de Matemáticas
Dieses Werk steht unter der Lizenz Creative Commons Namensnennung 4.0 International.