Publicado

2019-07-01

The formal derivative operator and multifactorial numbers

El operador derivada formal y números multifactoriales

DOI:

https://doi.org/10.15446/recolma.v53n2.85522

Palabras clave:

Context-free grammars, formal derivative operator, multifactorial numbers (en)
Gramáticas independiente del contexto, operador derivada formal, números multifactoriales (es)

Descargas

Autores/as

  • Juan Triana Universidad ECCI
  • Rodrigo De Castro Universidad Nacional de Colombia
In this paper some properties, examples and counterexamples about the formal derivative operator defined with respect to context-free grammars are presented. In addition, we show a connection between the context-free grammar G = { aabr; bbr+1 } and multifactorial numbers. Some identities involving multifactorial numbers will be obtained by grammatical methods.
En este artículo se presentan algunas propiedades, ejemplos y contraejemplos del operador derivada formal con respecto a gramáticas independientes del contexto. Adicionalmente, se obtiene una relación entre la gramática G = { aabr; bbr+1 } y números multifactoriales. Se obtienen algunas identidades sobre números multifactoriales mediante métodos gramaticales.

Referencias

D. Callan, A combinatorial survey of identities for the double factorial, arXiv:0906.1317v1 (2009), 1-29.

D. Callan, S. Ma, and T. Mansour, Some combinatorial arrays related to the Lotka-Volterra system, The Electronic Journal of Combinatorics 22 (2015), no. 2, #22.

C. Chen and K. Kho, Principles and techniques in combinatorics, World Scientific, Singapur, 1992.

W. Chen, Context-free grammars, differential operators and formal power series, Theoretical Computer Science 117 (1993), 113-129.

W. Chen and A. Fu, Context-free grammars for permutations and increasing trees, Advances in Applied Mathematics 82 (2017), 58-82.

D. Dumont, Grammaires de William Chen et dérivations dans les arbres et arborescences, Séminaire Lotharingien de Combinatoire 37 (1996), 1-21, B37a.

D. Dumont and A. Ramamonjisoa, Grammaire de Ramanujan et arbres de Cayley, The Electronic Journal of Combinatorics 3 (1996), no. 2, 1-18, R17.

A. Dzhumadildaeva, Problem 11406, American Mathematical Monthly 116 (2009), no. 1, 82.

H. Gould and J. Quaintance, Double fun with double factorials, Mathematics Magazine 85 (2012), no. 3, 177-192.

R. Hao, L. Wang, and H. Yang, Context-free grammars for triangular arrays, Acta Mathematica Sinica 31 (2015), no. 3, 445-455.

V. Lampret, Approximating real Pochhammer products: a comparison with powers, Central European Journal of Mathematics 7 (2009), no. 3, 493-505.

S. Ma, Some combinatorial arrays generated by context-free grammars, European Journal of Combinatorics 34 (2013), no. 7, 1081-1091.

S. Ma, J. Ma, Y. Yeh, and B. Zhu, Context-free grammars for several polynomials associated with Eulerian polynomials, The Electronic Journal of Combinatorics 25 (2018), no. 1, 1-31.

S. Ma, T. Mansour, and M. Schork, Normal ordering problem and the extensions of the Stirling grammar, Russian Journal of Mathematical Physics 21 (2014), no. 2, 242-255.

S. Ma and Y. Yeh, Eulerian polynomials, Stirling permutations of the second kind and perfect matchings, The Electronic Journal of Combinatorics 24 (2017), no. 4, 4-27.

E. Weisstein, CRC Concise Encylopedia of Mathematics, Chapman & Hall/ CRC, New York, 2002.

Cómo citar

APA

Triana, J. y De Castro, R. (2019). The formal derivative operator and multifactorial numbers. Revista Colombiana de Matemáticas, 53(2), 125–137. https://doi.org/10.15446/recolma.v53n2.85522

ACM

[1]
Triana, J. y De Castro, R. 2019. The formal derivative operator and multifactorial numbers. Revista Colombiana de Matemáticas. 53, 2 (jul. 2019), 125–137. DOI:https://doi.org/10.15446/recolma.v53n2.85522.

ACS

(1)
Triana, J.; De Castro, R. The formal derivative operator and multifactorial numbers. rev.colomb.mat 2019, 53, 125-137.

ABNT

TRIANA, J.; DE CASTRO, R. The formal derivative operator and multifactorial numbers. Revista Colombiana de Matemáticas, [S. l.], v. 53, n. 2, p. 125–137, 2019. DOI: 10.15446/recolma.v53n2.85522. Disponível em: https://revistas.unal.edu.co/index.php/recolma/article/view/85522. Acesso em: 22 ene. 2025.

Chicago

Triana, Juan, y Rodrigo De Castro. 2019. «The formal derivative operator and multifactorial numbers». Revista Colombiana De Matemáticas 53 (2):125-37. https://doi.org/10.15446/recolma.v53n2.85522.

Harvard

Triana, J. y De Castro, R. (2019) «The formal derivative operator and multifactorial numbers», Revista Colombiana de Matemáticas, 53(2), pp. 125–137. doi: 10.15446/recolma.v53n2.85522.

IEEE

[1]
J. Triana y R. De Castro, «The formal derivative operator and multifactorial numbers», rev.colomb.mat, vol. 53, n.º 2, pp. 125–137, jul. 2019.

MLA

Triana, J., y R. De Castro. «The formal derivative operator and multifactorial numbers». Revista Colombiana de Matemáticas, vol. 53, n.º 2, julio de 2019, pp. 125-37, doi:10.15446/recolma.v53n2.85522.

Turabian

Triana, Juan, y Rodrigo De Castro. «The formal derivative operator and multifactorial numbers». Revista Colombiana de Matemáticas 53, no. 2 (julio 1, 2019): 125–137. Accedido enero 22, 2025. https://revistas.unal.edu.co/index.php/recolma/article/view/85522.

Vancouver

1.
Triana J, De Castro R. The formal derivative operator and multifactorial numbers. rev.colomb.mat [Internet]. 1 de julio de 2019 [citado 22 de enero de 2025];53(2):125-37. Disponible en: https://revistas.unal.edu.co/index.php/recolma/article/view/85522

Descargar cita

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Visitas a la página del resumen del artículo

584

Descargas

Los datos de descargas todavía no están disponibles.