Published

2019-07-01

The formal derivative operator and multifactorial numbers

El operador derivada formal y números multifactoriales

DOI:

https://doi.org/10.15446/recolma.v53n2.85522

Keywords:

Context-free grammars, formal derivative operator, multifactorial numbers (en)
Gramáticas independiente del contexto, operador derivada formal, números multifactoriales (es)

Authors

  • Juan Triana Universidad ECCI
  • Rodrigo De Castro Universidad Nacional de Colombia
In this paper some properties, examples and counterexamples about the formal derivative operator defined with respect to context-free grammars are presented. In addition, we show a connection between the context-free grammar G = { aabr; bbr+1 } and multifactorial numbers. Some identities involving multifactorial numbers will be obtained by grammatical methods.
En este artículo se presentan algunas propiedades, ejemplos y contraejemplos del operador derivada formal con respecto a gramáticas independientes del contexto. Adicionalmente, se obtiene una relación entre la gramática G = { aabr; bbr+1 } y números multifactoriales. Se obtienen algunas identidades sobre números multifactoriales mediante métodos gramaticales.

References

D. Callan, A combinatorial survey of identities for the double factorial, arXiv:0906.1317v1 (2009), 1-29.

D. Callan, S. Ma, and T. Mansour, Some combinatorial arrays related to the Lotka-Volterra system, The Electronic Journal of Combinatorics 22 (2015), no. 2, #22.

C. Chen and K. Kho, Principles and techniques in combinatorics, World Scientific, Singapur, 1992.

W. Chen, Context-free grammars, differential operators and formal power series, Theoretical Computer Science 117 (1993), 113-129.

W. Chen and A. Fu, Context-free grammars for permutations and increasing trees, Advances in Applied Mathematics 82 (2017), 58-82.

D. Dumont, Grammaires de William Chen et dérivations dans les arbres et arborescences, Séminaire Lotharingien de Combinatoire 37 (1996), 1-21, B37a.

D. Dumont and A. Ramamonjisoa, Grammaire de Ramanujan et arbres de Cayley, The Electronic Journal of Combinatorics 3 (1996), no. 2, 1-18, R17.

A. Dzhumadildaeva, Problem 11406, American Mathematical Monthly 116 (2009), no. 1, 82.

H. Gould and J. Quaintance, Double fun with double factorials, Mathematics Magazine 85 (2012), no. 3, 177-192.

R. Hao, L. Wang, and H. Yang, Context-free grammars for triangular arrays, Acta Mathematica Sinica 31 (2015), no. 3, 445-455.

V. Lampret, Approximating real Pochhammer products: a comparison with powers, Central European Journal of Mathematics 7 (2009), no. 3, 493-505.

S. Ma, Some combinatorial arrays generated by context-free grammars, European Journal of Combinatorics 34 (2013), no. 7, 1081-1091.

S. Ma, J. Ma, Y. Yeh, and B. Zhu, Context-free grammars for several polynomials associated with Eulerian polynomials, The Electronic Journal of Combinatorics 25 (2018), no. 1, 1-31.

S. Ma, T. Mansour, and M. Schork, Normal ordering problem and the extensions of the Stirling grammar, Russian Journal of Mathematical Physics 21 (2014), no. 2, 242-255.

S. Ma and Y. Yeh, Eulerian polynomials, Stirling permutations of the second kind and perfect matchings, The Electronic Journal of Combinatorics 24 (2017), no. 4, 4-27.

E. Weisstein, CRC Concise Encylopedia of Mathematics, Chapman & Hall/ CRC, New York, 2002.

How to Cite

APA

Triana, J. and De Castro, R. (2019). The formal derivative operator and multifactorial numbers. Revista Colombiana de Matemáticas, 53(2), 125–137. https://doi.org/10.15446/recolma.v53n2.85522

ACM

[1]
Triana, J. and De Castro, R. 2019. The formal derivative operator and multifactorial numbers. Revista Colombiana de Matemáticas. 53, 2 (Jul. 2019), 125–137. DOI:https://doi.org/10.15446/recolma.v53n2.85522.

ACS

(1)
Triana, J.; De Castro, R. The formal derivative operator and multifactorial numbers. rev.colomb.mat 2019, 53, 125-137.

ABNT

TRIANA, J.; DE CASTRO, R. The formal derivative operator and multifactorial numbers. Revista Colombiana de Matemáticas, [S. l.], v. 53, n. 2, p. 125–137, 2019. DOI: 10.15446/recolma.v53n2.85522. Disponível em: https://revistas.unal.edu.co/index.php/recolma/article/view/85522. Acesso em: 22 jan. 2025.

Chicago

Triana, Juan, and Rodrigo De Castro. 2019. “The formal derivative operator and multifactorial numbers”. Revista Colombiana De Matemáticas 53 (2):125-37. https://doi.org/10.15446/recolma.v53n2.85522.

Harvard

Triana, J. and De Castro, R. (2019) “The formal derivative operator and multifactorial numbers”, Revista Colombiana de Matemáticas, 53(2), pp. 125–137. doi: 10.15446/recolma.v53n2.85522.

IEEE

[1]
J. Triana and R. De Castro, “The formal derivative operator and multifactorial numbers”, rev.colomb.mat, vol. 53, no. 2, pp. 125–137, Jul. 2019.

MLA

Triana, J., and R. De Castro. “The formal derivative operator and multifactorial numbers”. Revista Colombiana de Matemáticas, vol. 53, no. 2, July 2019, pp. 125-37, doi:10.15446/recolma.v53n2.85522.

Turabian

Triana, Juan, and Rodrigo De Castro. “The formal derivative operator and multifactorial numbers”. Revista Colombiana de Matemáticas 53, no. 2 (July 1, 2019): 125–137. Accessed January 22, 2025. https://revistas.unal.edu.co/index.php/recolma/article/view/85522.

Vancouver

1.
Triana J, De Castro R. The formal derivative operator and multifactorial numbers. rev.colomb.mat [Internet]. 2019 Jul. 1 [cited 2025 Jan. 22];53(2):125-37. Available from: https://revistas.unal.edu.co/index.php/recolma/article/view/85522

Download Citation

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Article abstract page views

584

Downloads

Download data is not yet available.