Published

2024-05-01

Poultry meat preservation with citric acid obtained from the fermentation of wheat straw by Aspergillus niger

Conservación de carne de ave con ácido cítrico obtenido de la fermentación de paja de trigo por Aspergillus niger

DOI:

https://doi.org/10.15446/rfnam.v77n2.105711

Keywords:

Fermentation, Lignocellulosic-wastes, Meat preservation, Organic acids, Shelf-life (en)
Fermentación, Residuos lignocelulósicos, Conservacion de carne, Ácidos orgánicos, Vida útil (es)

Downloads

Authors

Wheat straw is a highly abundant waste material that can be utilized as a carbon source in various fermentation processes. This study aimed to generate citric acid using Aspergillus niger from wheat straw and to evaluate its preservative potential in fresh poultry meat samples. Wheat straw samples were dried, pulverized, and chemically pretreated. The obtained wheat straw slurry (100 g L-1) was saccharified at 50 °C using cellulases obtained from Trichoderma viride. The hydrolyzed substrate was then subjected to fermentation by Aspergillus niger at 35 °C, 180 rpm, and pH=5 for 7 days. The citric acid generated was determined via the HPLC technique. Poultry meat was obtained and treated by soaking in different concentrations (1, 2, and 3%) of citric acid (n=4). The treated samples were then stored in sterile plastic bags for 14 days at 4 °C. Total Bacterial Count (TBC), Total Coliform Count (TCC), TVB-N, and TBARS were determined as storage progressed, and pH, TTA, and sensory evaluation were carried out. The highest citric acid obtained was 14.15 g L-1 which resulted in a percent yield of 26.18%. Treatment of meat with 3% citric acid had the lowest TBC and TCC of 2.55 and 0.34 Log10 CFU g-1 after 7 days of storage respectively. There were significant differences in the TBC and TCC observed within the treatments (P<0.05) as observed. T-VBN and TBARS reduction during storage was most evident in meat samples treated with 3% citric acid, retaining acceptability of 31.22 mg 100 g-1 and 0.74 mg kg-1, respectively at day 10. The 2% citric acid treatment had the best sensory attributes (16) on day 7. Findings from this study show that treatment with 2% citric acid and above showed promising results in extending the shelf-life of fresh poultry meat samples.

La paja de trigo es un material de desecho muy abundante que puede servir como fuente de carbono en diversos procesos de fermentación. El estudio tuvo como objetivo generar ácido cítrico a partir de la paja de trigo utilizando Aspergillus niger y evaluar su potencial conservante en muestras de carne fresca de ave. Las muestras de paja de trigo se secaron, pulverizaron y pretrataron químicamente. La suspensión de paja de trigo obtenida (100 g L-1) se sacarificó a 50 °C usando celulasas obtenidas de Trichoderma viride. El sustrato hidrolizado luego se sometió a fermentación por Aspergillus niger a 35 °C, 180 rpm y pH=5 durante 7 días. El ácido cítrico generado se determinó mediante la técnica de HPLC. La carne de ave se obtuvo y se trató mediante remojo en diferentes concentraciones (1, 2 y 3%) de ácido cítrico (n=4). Las muestras tratadas se almacenaron en bolsas de plástico estériles durante 14 días a 4 °C. Se determinaron el recuento total de bacterias (TBC), el recuento Total de Coliformes (TCC), el TVB-N y el TBARS a medida que avanzaba el almacenamiento, y se realizó el pH, el TTA y la evaluación sensorial. El ácido cítrico obtenido fue de 14,15 g L-1, lo que resultó en un rendimiento porcentual del 26,18%. El tratamiento de la carne con un 3% de ácido cítrico presentó los valores más bajos de TBC y TCC de 2,55 y 0,34 Log10 UFC g-1 después de 7 días de almacenamiento, respectivamente. Se observaron diferencias significativas (P<0,05) en el TBC y el TCC dentro de los tratamientos. La reducción de T-VBN y TBARS durante el almacenamiento fue más evidente en las muestras de carne tratadas con ácido cítrico al 3%, conservando una aceptabilidad de 31,22 mg 100 g-1 y 0,74 mg kg-1, respectivamente, en el día 10. El tratamiento con ácido cítrico al 2% tuvo los mejores atributos sensoriales (16) en el día 7. Los resultados de este estudio indican que el tratamiento con ácido cítrico al 2% mostró resultados promisorios en la prolongación de la vida útil de las muestras de carne fresca de ave.

References

Alasnier C, Meynier A, Viau M and Gandemer G (2000) Hydrolytic and oxidative changes in the lipids of chicken breast and thigh muscles during refrigerated storage. Journal of Food Science 65: 9– 4. https://doi.org/10.1111/j.1365-2621.2000.tb15947.x DOI: https://doi.org/10.1111/j.1365-2621.2000.tb15947.x

Alrumman SA (2016) Enzymatic saccharification and fermentation of cellulosic date palm wastes to glucose and lactic acid. Brazilian Journal of Microbiology 47: 10–119. https://doi.org/10.1016/j.bjm.2015.11.015 DOI: https://doi.org/10.1016/j.bjm.2015.11.015

Auta HS, Abidoye KT, Tahir H et al (2014) Citric acid production by Aspergillus niger cultivated on Parkia biglobosa fruit pulp. International Scholarly Research Notices. 8p. https://doi.org/10.1155/2014/762021 DOI: https://doi.org/10.1155/2014/762021

Azaizeh H, Tayeh H, Schneider R, Klongklaew A and Venus J (2020) Production of lactic acid from carob, banana and sugarcane lignocellulose biomass. Molecules 25(2956): 1–14.https://doi.org/10.3390/molecules25132956 DOI: https://doi.org/10.3390/molecules25132956

Barcenilla C, Ducic M, López M, Prieto M and Álvarez-Ordóñez A (2022) Application of lactic acid bacteria for the biopreservation of meat products: A systematic review. Meat Science 183: 108661. https://doi.org/10.1016/j.meatsci.2021.108661 DOI: https://doi.org/10.1016/j.meatsci.2021.108661

Bobko M, Haščík P, Bobková A, Kňazovická V et al (2012) Influence of different plant supplements applied in chicken nutrition on quality of their meat. Journal of Microbiology Biotechnology and Food Sciences 1: 1020-1031.

Carpes ST, DeAlencar SM and Masson ML (2009) Chemical composition and free radical scavenging activity of Apis mellifera bee pollen from Southern Brazil. Journal Food Technology 12: 20-229. DOI: https://doi.org/10.4260/BJFT2009800900016

Casas DE, Vargas DA, Randazzo E, Lynn D et al (2021) In-Plant validation of novel on-site ozone generation technology (bio-safe) compared to lactic acid beef carcasses and trim using natural microbiota and Salmonella and E. coli O157: H7 Surrogate Enumeration. Food 10: 1002. https://doi.org/10.3390/foods10051002 DOI: https://doi.org/10.3390/foods10051002

Castro P, Padrón J, Caballero MJ, Sanjuán E and Millán R (2006) Total volatile base nitrogen and its use to assess freshness in European sea bass stored in ice. Food Control 17: 245-248. https://doi.org/10.1016/j.foodcont.2004.10.015 DOI: https://doi.org/10.1016/j.foodcont.2004.10.015

CDC - Centre for Disease Control (2022) Available online; https://www.cdc.gov/foodsafety/chicken

Chen X, Zhang YM, Yang XY, Hopkins DL et al (2019) Shelf-life and microbial community dynamics of super-chilled beef imported from Australia to China. Food Research International 120: 784-792. https://doi.org/10.1016/j.foodres.2018.11.039 DOI: https://doi.org/10.1016/j.foodres.2018.11.039

Da Costa RJ, Voloski FL, Mondadori RG, Duval EH and Fiorentini ÂM (2019) Preservation of meat products with bacteriocins produced by lactic acid bacteria isolated from meat. Journal of Food Quality (1): 1-12. https://doi.org/10.1155/2019/4726510 DOI: https://doi.org/10.1155/2019/4726510

FAO - Food and Agricultural Organization of the United Nations (1986) Wood gas as engine fuel; FAO Forestry Papers- 72. http://www.fao.org

Gao P, Li G, Yang F, Lv X et al (2013) Preparation of lactic acid, formic acid and acetic acid from cotton cellulose by the alkaline pretreatment and hydrothermal degradation. Industrial Crops and Products 48: 61-67. https://doi.org/10.1016/j.indcrop.2013.04.002 DOI: https://doi.org/10.1016/j.indcrop.2013.04.002

Gatellier PH, Kondjoyan A, Portanguen S, Greve E (2009) Determination of aromatic amino acid content in cooked meat by derivative spectrophotometry: Implications for nutritional quality of meat. Food Chemestry 114: 1074–1078. https://doi.org/10.1016/j.foodchem.2008.10.009 DOI: https://doi.org/10.1016/j.foodchem.2008.10.009

Hafez HM and El-Adawy H (2019) Foodborne diseases of poultry and related problems. Journal of Food Nutrition and Metabolism 1: 2-5. https://doi.org/10.31487/j.JFNM.2018.01.005 DOI: https://doi.org/10.31487/j.JFNM.2018.01.005

Han J, Luo X, Zhang Y, Zhu L et al (2020) Effects of spraying lactic acid and peroxyacetic acid on the bacterial decontamination and bacterial composition of beef carcasses. Meat Science 164: 108104. https://doi.org/10.1016/j.meatsci.2020.108104 DOI: https://doi.org/10.1016/j.meatsci.2020.108104

Haščík P, Elimam IOE, Garlík J, Bobko M and Kročko M (2013) Sensory evaluation of broiler meat after addition of slovak bee pollen in their feed mixture. Potravinarstvo 7: 107-110. https://doi.org/10.5219/280 DOI: https://doi.org/10.5219/280

Hatcher DW, Symons SJ and Manivannan U (2004) Developments in the use of image analysis for the assessment of oriental noodle appearance and colour. Journal of Food Engineering 61: 109-117. https://doi.org/10.1016/S0260-8774(03)00192-4 DOI: https://doi.org/10.1016/S0260-8774(03)00192-4

Holman BWB, Mao Y, Coombs CEO, Van de Ven et al (2016) Relationship between colorimetric (instrumental) evaluation and consumer-defined beef colour acceptability. Meat Science 121: 104-106. https://doi.org/10.1016/j.meatsci.2016.05.002 DOI: https://doi.org/10.1016/j.meatsci.2016.05.002

Holtzapple MT (2003) Hemicelluloses. Encyclopedia of food sciences and nutrition 44(25): 3060–3071. https://doi.org/10.1016/B0-12-227055-X/00589-7 DOI: https://doi.org/10.1016/B0-12-227055-X/00589-7

Huang WC, Chen SJ and Chen TL (2006) The role of dissolved oxygen and function of agitation in hyaluronic acid fermentation. Biochemical Engineering Journal 32(3): 239-243. https://doi.org/10.1016/j.bej.2006.10.011 DOI: https://doi.org/10.1016/j.bej.2006.10.011

ICMSF - International Commission on Microbiological Specifications for Foods (2022) Available online: https://www.icmsf.org

Kadam KL and McMillan JD (2003) Availability of corn stover as a sustainable feedstock for bioethanol production. Bioresource Technology 88(1): 17-25. https://doi.org/10.1016/S0960-8524(02)00269-9 DOI: https://doi.org/10.1016/S0960-8524(02)00269-9

Kang S, Jang A, Lee SO, Seok MJ et al (2003) Effect of organic acids on microbial populations and Salmonella typhimurium in Pork Loins. Asian-Australasian Journal of Animal Sciences16: 96-99. DOI: https://doi.org/10.5713/ajas.2003.96

Khalafalla F, Ali F, Ouf J and Mosa A (2016) Decontamination of broiler carcasses` skin using medicinal herbal extracts. Journal of Veterinary Medical Research 23. 26-34. https://doi.org/10.21608/jvmr.2016.43209 DOI: https://doi.org/10.21608/jvmr.2016.43209

Kou X, Yang R, Zhao J, Lu J and Liu Y (2013) Enzymatic saccharification and L-lactic acid fermentation of corn stover pretreated with liquid hot water by Rhizopus oryzae. BioResources 8: 4899-4911. https://doi.org/10.15376/biores.8.4.4899-4911 DOI: https://doi.org/10.15376/biores.8.4.4899-4911

Książek E (2023) Citric acid: properties, microbial production, and applications in industries. Molecules 29(1):22. http://doi.org/10.3390/molecules29010022 DOI: https://doi.org/10.3390/molecules29010022

Maaya M and Al-Abdullah BM (2016) Sensory evaluation of different packaged roast beef treatments designed for the extension of its shelf life. Food and Nutrition Sciences 7: 1052-1061. https://doi.org/10.4236/fns.2016.711101 DOI: https://doi.org/10.4236/fns.2016.711101

Mood SH, Golfeshan AH, Tabatabaei M, Jouzani GS (2013) Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment. Renewable and Sustainable Energy Reviews 27: 77-93. https://doi.org/10.1016/j.rser.2013.06.033 DOI: https://doi.org/10.1016/j.rser.2013.06.033

Mussatto SI (2014) Brewer’s spent grain: a valuable feedstock for industrial applications. Journal of the Science of Food and Agriculture 94(7): 1264-1275. https://doi.org/10.1002/jsfa.6486 DOI: https://doi.org/10.1002/jsfa.6486

Ngouénam JR, Momo KC, Kaktcham P, Foko KE et al (2021) Lactic acid production ability of Lactobacillus sp. from four tropical fruits using their byproducts as carbon source. Heliyon 7:e07079: 1– 10. https://doi.org/10.1016/j.heliyon.2021.e07079 DOI: https://doi.org/10.1016/j.heliyon.2021.e07079

Odu NN, Uzah GA, Akani NP (2020) Optimization of citric acid production by Aspergillus niger and Candida tropicalis for solid state fermentation using banana peel substrate. Journal of Life and Bio Sciences Research 1: 51–60. DOI: https://doi.org/10.38094/jlbsr1214

Ogidi CO, George OH, Aladejana OM, Malomo O and Famurewa O (2020) Fruit preservation with bioethanol obtained from the fermentation of brewer’s spent grain with Saccharomyces carlsbergensis. Revista Facultad Nacional de Agronomía Medellín 73(3): 9321-9331. https://doi.org/10.15446/rfnam.v73n3.85316 DOI: https://doi.org/10.15446/rfnam.v73n3.85316

Ozen S and Ozilgen M (1992) Effects of substrate concentration on growth and lactic acid production by mixed cultures of Lactobacillus bulgaricus and Streptococcus thermophilus. Journal of Chemical Technology & Biotechnology 54: 57-61. https://doi.org/10.1002/jctb.280540111 DOI: https://doi.org/10.1002/jctb.280540111

Ramesh T and Kalaiselvam M (2009) An experimental study on citric acid production by Aspergillus niger Using Gelidiella acerosa as a substrate. Indian Journal of Microbiology 51(3): 289–293. https://doi.org/10.1007/s12088-011-0066-9

Rahman SME, Park J, Bin Song K, Al-Harbi NA and Oh DH (2012) Effects of slightly acidic low concentration electrolyzed water on microbiological, physico-chemical, and sensory quality of fresh chicken breast meat. Journal of Food Science 71: 35. https://doi.org/10.1111/j.1750-3841.2011.02454.x DOI: https://doi.org/10.1111/j.1750-3841.2011.02454.x

Ren S, Ma R and Wang N (2012) Microbial changes and freshkeeping of fresh noodles under refrigerated condition. Information Technology and Agricultural Engineering 134: 973-980. https://doi.org/10.1007/978-3-642-27537-1_116 DOI: https://doi.org/10.1007/978-3-642-27537-1_116

Rukchon C, Nopwinyuwong A, Trevanich S, Jinkarn T and Suppakul P (2014) Development of food spoilage indicator for monitoring freshness of skinless chicken breast. Talanta 547-554. https://doi.org/10.1016/j.talanta.2014.07.048 DOI: https://doi.org/10.1016/j.talanta.2014.07.048

Sánchez-Clemente R, Igeño MI, Ana GP, Guijo MI et al (2018) Study of pH Changes in media during bacterial growth of several environmental strains. Proceedings 2: 1297. https://doi.org/10.3390/proceedings2201297 DOI: https://doi.org/10.3390/proceedings2201297

Santos ECCD, Castro VS, Cunha-Neto A, Santos LFD et al (2018) Escherichia coli O26 and O113: H21 on carcasses and beef from a slaughterhouse located in Mato Grosso, Brazil. Foodborne Pathog. Dis 15: 653–659. https://doi.org/10.1089/fpd.2018.2431 DOI: https://doi.org/10.1089/fpd.2018.2431

Schmedes A and Hølmer G (1989) A new thiobarbituric acid (TBA) method for determining free malondialdehyde (MDA) and hydroperoxides selectively as a measure of lipid peroxidation. Journal of the American Oil Chemists’ Society 66(6): 813–817. https://doi.org/10.1007/BF02653674 DOI: https://doi.org/10.1007/BF02653674

Singh R, Kapoor V and Kumar V (2012) Utilization of agro-industrial wastes for the simultaneous production of amylase and xylanase by thermophilic Actinomycetes. Brazilian Journal of Microbiology 43(4): 1545–1552. DOI: https://doi.org/10.1590/S1517-83822012000400039

Smaoui S, Ben Hlima H and Ghorbel R (2012) The effect of sodium lactate and lactic acid combinations on the microbial, sensory, and chemical attributes of marinated chicken thigh. Poultry Science 91: 1473. https://doi.org/10.3382/ps.2011-01641 DOI: https://doi.org/10.3382/ps.2011-01641

Steiner J, Procopio S and Becker T (2015) Brewer’s spent grain: source of value-added polysaccharides for the food industry in reference to the health claims. European Food Research and Technology 241(3): 303-315. https://doi.org/10.1007/s00217-015-2461-7 DOI: https://doi.org/10.1007/s00217-015-2461-7

Thangavelu R and Murugaiyan K (2011) An Experimental study on citric acid production by Aspergilluu niger using Gelidiella acerosa as a substrate. Indian Journal of Microbiology 51(3): 289-293. https://doi.org/10.1007%2Fs12088-011-0066-9 DOI: https://doi.org/10.1007/s12088-011-0066-9

Tian T, Liu Y and Wang X (2022) Shelf-life extension of chilled beef by sodium lactate enhanced with Natamycin against discoloration and spoilage. Food Science and Technology 42: 67-73. https://doi.org/10.1590/fst.30522 DOI: https://doi.org/10.1590/fst.30522

USDA (2003) Roadmap for agricultural biomass feedstock supply in the United States. U.S. Department of Energy Efficiency and Renewable Energy. Washington, D.C.

Van Ba H, Seo HW, Pil-Nam S, Kim YS et al (2018) The effects of pre-and post-slaughter spray application with organic acids on microbial population reductions on beef carcasses. Meat Science 137: 16–23. https://doi.org/10.1016/j.meatsci.2017.11.006 DOI: https://doi.org/10.1016/j.meatsci.2017.11.006

Wang X, Salvachúa D, Nogué VSI, Michener WE et al (2017) Propionic acid production from corn stover hydrolysate by Propionibacterium acidipropionici. Biotechnol Biofuels 10(200) 55-68. https://doi.org/10.1186/s13068-017-0884-z DOI: https://doi.org/10.1186/s13068-017-0884-z

Xiaowei F, Bin H, Wu D and Wenping Y (2015) Effect of organicacid-soaking on the extension of the shelf life of fresh noodles. American Journal of Food Technology 10: 215-222. https://doi.org/10.3923/ajft.2015.215.222 DOI: https://doi.org/10.3923/ajft.2015.215.222

Yang X, Zhang Y, Zhu L, Han M et al (2016) Effect of packaging atmospheres on storage quality characteristics of heavily marbled beef longissimus steaks. Meat Science 117: 50-56. https://doi.org/10.1016/j.meatsci.2016.02.030 DOI: https://doi.org/10.1016/j.meatsci.2016.02.030

Zhang J, Song HS, Zhang C, Kim YB et al (2021) Culture-independent analysis of the bacterial community in Chinese fermented vegetables and genomic analysis of lactic acid bacteria. Archives of Microbiology 203: 4693-4703. https://doi.org/10.1007/s00203-021-02375-7 DOI: https://doi.org/10.1007/s00203-021-02375-7

Zhang S, Keshwani DR, Xu Y and Hanna MA (2012) Alkali combined extrusion pretreatment of corn stover to enhance enzyme saccharification, Industrial Crops and Products 37(1): 352-357. https://doi.org/10.1016/j.indcrop.2011.12.001 DOI: https://doi.org/10.1016/j.indcrop.2011.12.001

Zhao L, Cao G, Wang AJ, Ren HY (2012) Enzymatic saccharification of cornstalk by onsite cellulases produced by Trichoderma viride for enhanced biohydrogen production. GCB Bioenergy 5: 591–598. DOI: https://doi.org/10.1111/gcbb.12022

How to Cite

APA

Osazuwa, C., Olaniyi , O. O., Akinyele, B. J. and Akinyosoye , F. A. (2024). Poultry meat preservation with citric acid obtained from the fermentation of wheat straw by Aspergillus niger. Revista Facultad Nacional de Agronomía Medellín, 77(2), 10729–10741. https://doi.org/10.15446/rfnam.v77n2.105711

ACM

[1]
Osazuwa, C., Olaniyi , O.O., Akinyele, B.J. and Akinyosoye , F.A. 2024. Poultry meat preservation with citric acid obtained from the fermentation of wheat straw by Aspergillus niger. Revista Facultad Nacional de Agronomía Medellín. 77, 2 (May 2024), 10729–10741. DOI:https://doi.org/10.15446/rfnam.v77n2.105711.

ACS

(1)
Osazuwa, C.; Olaniyi , O. O.; Akinyele, B. J.; Akinyosoye , F. A. Poultry meat preservation with citric acid obtained from the fermentation of wheat straw by Aspergillus niger. Rev. Fac. Nac. Agron. Medellín 2024, 77, 10729-10741.

ABNT

OSAZUWA, C.; OLANIYI , O. O.; AKINYELE, B. J.; AKINYOSOYE , F. A. Poultry meat preservation with citric acid obtained from the fermentation of wheat straw by Aspergillus niger. Revista Facultad Nacional de Agronomía Medellín, [S. l.], v. 77, n. 2, p. 10729–10741, 2024. DOI: 10.15446/rfnam.v77n2.105711. Disponível em: https://revistas.unal.edu.co/index.php/refame/article/view/105711. Acesso em: 9 sep. 2024.

Chicago

Osazuwa, Christopher, Oladipo Oladiti Olaniyi, Bamidele Juliet Akinyele, and Felix Akinsola Akinyosoye. 2024. “Poultry meat preservation with citric acid obtained from the fermentation of wheat straw by Aspergillus niger”. Revista Facultad Nacional De Agronomía Medellín 77 (2):10729-41. https://doi.org/10.15446/rfnam.v77n2.105711.

Harvard

Osazuwa, C., Olaniyi , O. O., Akinyele, B. J. and Akinyosoye , F. A. (2024) “Poultry meat preservation with citric acid obtained from the fermentation of wheat straw by Aspergillus niger”, Revista Facultad Nacional de Agronomía Medellín, 77(2), pp. 10729–10741. doi: 10.15446/rfnam.v77n2.105711.

IEEE

[1]
C. Osazuwa, O. O. Olaniyi, B. J. Akinyele, and F. A. Akinyosoye, “Poultry meat preservation with citric acid obtained from the fermentation of wheat straw by Aspergillus niger”, Rev. Fac. Nac. Agron. Medellín, vol. 77, no. 2, pp. 10729–10741, May 2024.

MLA

Osazuwa, C., O. O. Olaniyi, B. J. Akinyele, and F. A. Akinyosoye. “Poultry meat preservation with citric acid obtained from the fermentation of wheat straw by Aspergillus niger”. Revista Facultad Nacional de Agronomía Medellín, vol. 77, no. 2, May 2024, pp. 10729-41, doi:10.15446/rfnam.v77n2.105711.

Turabian

Osazuwa, Christopher, Oladipo Oladiti Olaniyi, Bamidele Juliet Akinyele, and Felix Akinsola Akinyosoye. “Poultry meat preservation with citric acid obtained from the fermentation of wheat straw by Aspergillus niger”. Revista Facultad Nacional de Agronomía Medellín 77, no. 2 (May 1, 2024): 10729–10741. Accessed September 9, 2024. https://revistas.unal.edu.co/index.php/refame/article/view/105711.

Vancouver

1.
Osazuwa C, Olaniyi OO, Akinyele BJ, Akinyosoye FA. Poultry meat preservation with citric acid obtained from the fermentation of wheat straw by Aspergillus niger. Rev. Fac. Nac. Agron. Medellín [Internet]. 2024 May 1 [cited 2024 Sep. 9];77(2):10729-41. Available from: https://revistas.unal.edu.co/index.php/refame/article/view/105711

Download Citation

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Article abstract page views

50

Downloads

Download data is not yet available.