Artificial neural networks in the retention of anthocyanins and total phenolics in the osmotic pre-treatment of Biloxi variety blueberry (Vaccinium corymbosum L.) jam
Redes neuronales artificiales en la retención de antocianinas y fenoles totales en el pre-tratamiento osmótico de mermelada de arándano (Vaccinium corymbosum L.) variedad Biloxi
DOI:
https://doi.org/10.15446/rfnam.v77n3.107488Keywords:
Artificial intelligent, Machine learning , Multiple-response, Single-response (en)Inteligencia artificial, Aprendizaje de máquina, Múltiple-respuesta, Simple-respuesta (es)
Downloads
Blueberries are a fruit that is an important source of bioactive components beneficial to the human diet, such as anthocyanins and total phenolics, which are altered by the use of high temperatures during processing. This study aimed to evaluate the use of artificial neural networks in the optimization of sucrose concentration and time for the osmotic pre-treatment of blueberries of the Biloxi variety, to retain the greatest amount of anthocyanins and total phenolics in the subsequent preparation of jam. Artificial neural networks of the feedforward type were used, with a Backpropagation training algorithm with Levenberg-Marquardt weight adjustment, to achieve the optimal predicted combination that maximizes the retention of these bioactive components. The model achieved its best performance with 11 neurons in the hidden layer, achieving an R2 coefficient of 0.98 and a mean square error of 4.76, indicating a strong ability for generalization. Artificial neural networks allowed to obtain the best optimal combination of predicted multiple responses of factors consisting of a sucrose concentration of 1.64 M and a time of 211.52 min, which retained a higher content of total monomeric anthocyanins with 70.98 mg cyanidin-3-O-glucoside 100 g-1 of jam and total phenolics with 110.54 mg GAE g-1 of jam. On the other hand, through single-response optimization was obtained that the combination of experimental factors that maximized total anthocyanins (71.59 mg cyanidin-3-O-glucoside 100 g-1 of jam) was 1.54 M of sucrose and 232.73 min and for total phenols (111.06 mg GAE g-1 of jam) 1.79 M of sucrose and 196.36 min. The use of artificial neural networks is an excellent alternative for modeling phenomena, compared to traditional methods.
El arándano es un fruto que posee una fuente importante de componentes bioactivos beneficiosos para la dieta humana, como las antocianinas y fenoles totales, que se ven alterados por el uso de temperaturas altas durante el procesamiento. El objetivo de este estudio fue evaluar el uso de redes neuronales artificiales en la optimización de la concentración de sacarosa y el tiempo para el pretratamiento osmótico de arándanos de la variedad Biloxi, con la finalidad de retener la mayor cantidad de antocianinas y componentes fenólicos totales en la elaboración posterior de mermelada. Se utilizó redes neuronales artificiales del tipo feedfoward, con algoritmo de entrenamiento de Backpropagation con ajuste de pesos de Levenberg-Marquardt para lograr la combinación óptima predicha que maximice la retención de estos componentes bioactivos. El modelo logró su mejor rendimiento con 11 neuronas en la capa oculta, logrando un coeficiente R2 de 0,98 y un error cuadrático medio de 4,76; lo que indica una gran capacidad de generalización. Las redes neuronales artificiales permitieron obtener la mejor combinación de los factores experimentales - concentración de sacarosa (1,64 M) y tiempo (211,52 min)- que maximizaron los contenidos de antocianinas monoméricas totales (70,98 mg cianidina-3-Oglucósido 100 g-1) y fenoles totales (110,54 mg AGE g-1) presentes en mermelada. En cambio, mediante optimización de respuesta se obtuvo que la combinación de factores experimentales que maximizó las antocianinas totales (71,59 mg cianidina-3-O-glucósido 100 g-1 de mermelada) fue 1,54 M de sacarosa y 232,73 min y para fenoles totales (111,06 mg GAE g-1 de mermelada) 1,79 M y 196,36 min. El uso de redes neuronales artificiales es una excelente alternativa para modelar fenómenos, en comparación con los métodos tradicionales.
References
Ahmed I, Qazi I and Jamal S (2016) Developments in osmotic dehydration technique for the preservation of fruits and vegetables. Innovative Food Science and Emerging Technologies 34:29-43. https://doi.org/10.1016/j.ifset.2016.01.003
Alabi K, Olalusi A, Olaniyan A, Fadeyibi A and Gabriel L (2022) Effects of osmotic dehydration pretreatment on freezing characteristics and quality of frozen fruits and vegetables. Journal of Food Process Engineering 45(8):e14037. https://doi.org/10.1111/jfpe.14037
Barraza-Jáuregui G, Vega G, Valeriano J, Obregón J, Siche R and Miano A (2017) Osmotic pretreatment to assure retention of phenolics and anthocyanins in berry jams. Food Bioscience 17: 24–28. https://doi.org/10.1016/j.fbio.2016.12.001
Brüggenwirth M and Knoche M (2016) Factors affecting mechanical properties of the skin of sweet cherry fruit. Journal of the American Society for Horticultural Science. American Society for Horticultural Science 141:45–53. https://doi.org/10.21273/JASHS.141.1.45
Chang V, Rupa V, Qianwen A and Hossain MA (2022) An artificial intelligence model for heart disease detection using machine learning algorithms. Healthcare Analytics 2:100016. https://doi.org/10.1016/j.health.2022.100016
Chhajer P, Shah M and Kshirsagar A (2022) The applications of artificial neural networks, support vector machines, and long–short term memory for stock market prediction. Decision Analytics Journal 2:100015. https://doi.org/10.1016/j.dajour.2021.100015
Çetin N and Sağlam C (2022) Rapid detection of total phenolics, antioxidant activity and ascorbic acid of dried apples by chemometric algorithms. Food Bioscience 47:101670. https://doi.org/10.1016/j.fbio.2022.101670
Cichowska J, Figiel A, Stasiak-Różańska L and Witrowa-Rajchert D (2019) Modeling of osmotic dehydration of apples in sugar alcohols and dihydroxyacetone (DHA) solutions. Foods 8: 20. https://doi.org/10.3390/foods8010020
Costa E, Hess A, Finger C, Schons C, Klein D et al (2022) Enhancing Height Predictions of Brazilian Pine for Mixed, Uneven-Aged Forests Using Artificial Neural Networks. Forests 13:1284. https://doi.org/10.3390/f13081284
Dias R, Johnson T, Ferrão F, Munoz P, de la Mata P and Harynuk J (2023) Improved sample storage, preparation and extraction of blueberry aroma volatile organic compounds for gas chromatography. Journal of Chromatography Open 3:100075. https://doi.org/10.1016/j.jcoa.2022.100075
Dong R, Tian J, Huang Z, Yu Q, Xie J et al (2023) Intermolecular binding of blueberry anthocyanins with water-soluble polysaccharides: Enhancing their thermostability and antioxidant abilities. Food Chemistry 410:135375. https://doi.org/10.1016/j.foodchem.2022.135375
Giusti M and Wrolstad R (2001) Characterization and measurement of anthocyanins by UV–visible spectroscopy. Current Protocols in Food Analytical Chemistry. http://doi.org/10.1002/0471142913.faf0102s00
Hesami M, Condori-Apfata J, Valencia M and Mohammadi M (2020) Application of Artificial Neural Network for Modeling and Studying In Vitro Genotype-Independent Shoot Regeneration in Wheat. Applied Sciences 10(15):5370. https://doi.org/10.3390/app10155370
Lee J, Durst R and Wrolstad R (2005) Determination of total monomeric anthocyanin pigment content of fruit juices, beverages, natural colorants, and wines by the pH differential method: collaborative study. Journal of AOAC International 88(5):1269-1278. https://doi.org/10.1093/jaoac/88.5.1269
Liao W, Shen J, Manickam S, Li S, Tao Y, Li D, Liu D and Han Y (2023) Investigation of blueberry juice fermentation by mixed probiotic strains: Regression modeling, machine learning optimization and comparison with fermentation by single strain in the phenolic and volatile profiles. Food Chemistry 405:134982. https://doi.org/10.1016/j.foodchem.2022.134982
Lu-Lu Z, Jing-Nan R, Yan Z, Jia-Jia L, Ya-Li L et al (2016) Effects of modified starches on the processing properties of heat-resistant blueberry jam. LWT - Food Science and Technology 72 :447–456. https://doi.org/10.1016/j.lwt.2016.05.018
Piljac-Zegarac J, Valek L, Martinez S and Belšcak A (2009) Fluctuations in the phenolic content and antioxidant capacity of dark fruit juices in refrigerated storage. Food Chemistry 113: 394–400. https://doi.org/10.1016/j.foodchem.2008.07.048
Rahman S, Sharma P and Said Z (2022) Application of Response Surface Methodology based D-optimal Design for Modeling and Optimization of Osmotic dehydration of Zucchini. Digital Chemical Engineering 4:100039. https://doi.org/10.1016/j.dche.2022.100039
Rodríguez-Hernández C, Musso M, Kyndt E and Cascallar E (2021) Artificial neural networks in academic performance prediction: Systematic implementation and predictor evaluation. Computers and Education: Artificial Intelligence 2:100018. https://doi.org/10.1016/j.caeai.2021.100018
Shinwari K and Rao P (2018) Stability of bioactive compounds in fruit jam and jelly during processing and storage: A review. Trends in Food Science & Technology 75:181–193. https://doi.org/10.1016/j.tifs.2018.02.002
Shukla R, Khan M and Srivastava A (2018) Mass transfer kinetics during osmotic dehydration of banana in different osmotic agent. International Journal of Agricultural Engineering 11:108-122. https://doi.org/10.15740/HAS/IJAE/11.1/108-122
Skrede G, Wrolstad E and Durst W (2008) Changes in anthocyanins and polyphenolics during juice processing of highbush blueberries (Vaccinium corymbosum L.). Journal of Food Science 65(2):357–364. https://doi.org/10.1111/j.1365-2621.2000.tb16007.x
Soumyabrata D, Hewei W, Chidozie S, Nishtha J, Bharadwaj V and Deepu J (2022) A predictive analytics approach for stroke prediction using machine learning and neural networks. Healthcare Analytics 2:100032. https://doi.org/10.1016/j.health.2022.100032
Vidra A and Németh A (2022) Applicability of Neural Networks for the Fermentation of Propionic Acid by Propionibacterium acidipropionici. Periodica Polytechnica Chemical Engineering 66:10–19. https://doi.org/10.3311/PPch.18283
Watanabe Y, Yoshimoto K, Okada Y and Nomura M (2011) Effect of impregnation using sucrose solution on stability of anthocyanin in strawberry jam. LWT – Food Science and Technology 44:891–895. https://doi.org/10.1016/j.lwt.2010.11.003
Winkler A, Grimm E and Knoche M (2019) Sweet Cherry Fruit: Ideal Osmometers?. Frontiers in Plant Science 10:164. https://doi.org/10.3389/fpls.2019.00164
Wicklunda T, Rosenfeldb H, Martinsenc B, Sundforb M et al (2005) Antioxidant capacity and colour of strawberry jam as influenced by cultivar and storage conditions. LWT – Food Science and Technology 38:387–391. https://doi.org/10.1016/j.lwt.2004.06.017
Wrolstad R, Durst R and Lee J (2005) Tracking color and pigment changes in anthocyanin products. Trends in Food Science & Technology 16(9):423-428. https://doi.org/10.1016/j.tifs.2005.03.019
Yu Z, Gong H, Li M and Tang D (2022) Hollow prussian blue nanozyme-richened liposome for artificial neural network-assisted multimodal colorimetric-photothermal immunoassay on smartphone. Biosensors and Bioelectronics 218:114751. https://doi.org/10.1016/j.bios.2022.114751
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License
Copyright (c) 2024 Revista Facultad Nacional de Agronomía Medellín
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The journal allows the author(s) to maintain the exploitation rights (copyright) of their articles without restrictions. The author(s) accept the distribution of their articles on the web and in paper support (25 copies per issue) under open access at local, regional, and international levels. The full paper will be included and disseminated through the Portal of Journals and Institutional Repository of the Universidad Nacional de Colombia, and in all the specialized databases that the journal considers pertinent for its indexation, to provide visibility and positioning to the article. All articles must comply with Colombian and international legislation, related to copyright.
Author Commitments
The author(s) undertake to assign the rights of printing and reprinting of the material published to the journal Revista Facultad Nacional de Agronomía Medellín. Any quotation of the articles published in the journal should be made given the respective credits to the journal and its content. In case content duplication of the journal or its partial or total publication in another language, there must be written permission of the Director.
Content Responsibility
The Faculty of Agricultural Sciences and the journal are not necessarily responsible or in solidarity with the concepts issued in the published articles, whose responsibility will be entirely the author or the authors.