Published

2024-05-01

Assessment of agro-physiological traits for identifying drought-tolerant durum wheat (Triticum durum Desf.) genotypes under rainfed conditions

Evaluación de rasgos agrofisiológicos para la identificación de genotipos de trigo duro (Triticum durum Desf.) tolerantes a la sequía en condiciones de secano

DOI:

https://doi.org/10.15446/rfnam.v77n2.108152

Keywords:

Grain yield, Genotype, Semi-arid, Water, Performance (en)
Rendimiento de grano, Genotipo, Semiárido, Agua, Desempeño (es)

Downloads

Authors

Breeders are focused on developing high-yielding genotypes that can grow in semi-arid regions under water stress. A field experiment was conducted during the 2020 to 2021 cropping season at the experimental field of ITGC, Setif. The aim of this study was to assess the performance of durum wheat genotypes for agronomic traits growing under semi-arid conditions. The 10 genotypes evaluated were grown in a randomized block with three replications. Analysis of variance showed that the genotype effect was significant for most parameters studied. The best grain yield was recorded for genotypes G3 (3.52 t ha-1) G2 (3.48 t ha-1), and G5 (2.89 t ha-1); thus, they maintained the highest water content (81.09, 84.95, and 84.34%, respectively) and lower temperatures under these conditions. Simple linear regression showed that grain yield correlated positively with the number of spikes, and the number of grains per spike. The principal component (PC) analysis classified both genotypes G2 and G3 as high grain yielding genotypes; by contrast, genotypes Jupare C 2001, Bouatleb, and G1 were low-yielding.

Los mejoradores se centran en desarrollar genotipos de alto rendimiento que puedan crecer en regiones semiáridas sometidas a estrés hídrico. Se realizó un experimento de campo durante la temporada agrícola de 2020 a 2021 en el campo experimental del ITGC, Sétif. El objetivo de este estudio fue evaluar el desempeño de los genotipos de trigo duro en cuanto a características agronómicas en condiciones semiáridas. Los 10 genotipos evaluados fueron cultivados en bloques al azar con tres repeticiones. El análisis de varianza mostró que el efecto del genotipo fue significativo para la mayoría de los parámetros estudiados. El mejor rendimiento de grano se registró para los genotipos G3 (3,52 t ha-1), G2 (3,48 t ha-1) y G5 (2,89 t ha-1); así mantuvieron el mayor contenido de agua (81,09; 84,95 y 84,34%, respectivamente) y temperaturas más bajas en estas condiciones. La regresión lineal simple mostró que el rendimiento de grano se correlacionaba positivamente con el número de espigas y el número de granos por espiga. El análisis de componentes principales (PC) clasificó ambos genotipos G2 y G3 como genotipos de alto rendimiento de grano; por el contrario, los genotipos Jupare C 2001, Bouatleb y G1 fueron de bajo rendimiento.

References

Alqudah AM and Thorsten S (2015) Barley leaf area and leaf growth rates are maximized during the pre-anthesis phase. Agronomy 5(2): 107-129. https://doi.org/10.3390/agronomy5020107 DOI: https://doi.org/10.3390/agronomy5020107

Anzer UI, Ashok KC, Satyaveer SD and Renu M (2017) Cell membrane stability- an important criterion for selection of heat tolerant genotypes in wheat (Triticum aestivum L.). Journal of Applied and Natural Science 9 (4): 1894– 900. https://doi.org/10.31018/jans.v9i4.1458 DOI: https://doi.org/10.31018/jans.v9i4.1458

Ara A, Mohi ud din R and Mehraj U (2018) Principal component analysis for assessing phenotypic parameters in Brassica rapa var. Brown sarson. International Journal of Advance Research in Science and Engineering 7(4): 288-289.

Atar F, Güney D, Bayraktar A, Yıldırım N and Turna I (2020) Seasonal change of chlorophyll content (spad value) in some tree and shrub species. Turkish Journal of Forest Science 4(2): 245- 256. https://doi.org/10.32328/turkjforsci.711389 DOI: https://doi.org/10.32328/turkjforsci.711389

Bajji M, Lutts S and Kinet JM (2001) Water deficit effects on solute contribution to osmotic adjustment as a function of leaf aging in three durum wheat (Triticum durum Desf.) cultivars performing differently in arid conditions. Plant Science 160(4): 669–681. https://doi.org/10.1016/s0168-9452(00)00443-x DOI: https://doi.org/10.1016/S0168-9452(00)00443-X

Bali AS and Sidhu GPS (2019) Abiotic stress-induced oxidative stress in wheat. pp. 225-239. In: Wheat Production in Changing Environments: Responses, Adaptation and Tolerance https://doi.org/10.1007/978-981-13-6883-7_10 DOI: https://doi.org/10.1007/978-981-13-6883-7_10

Bazzaz MM, Khaliq QA, Karim MA et al (2015) Canopy temperature and yield based selection of wheat genotypes for water deficit environment. Open Access Library Journal. https://doi.org/10.4236/oalib.1101917 DOI: https://doi.org/10.4236/oalib.1101917

Bendada H (2021) Contribution to the selection of the adaptation of some barley genotypes (Hordeum vulgare L.) in the semi-arid agroclimatic conditions of the Setif region (Doctoral thesis). Mohamed Boudiaf m’sila University. 133 p.

Bendjama A and Ramdani S (2021) Genetic variability of some agronomic traits in a collection of wheat (Triticum turgidum L. ssp) genotypes under South Mediterranean growth conditions. Italian Journal of Agronomy (AOP). https://doi.org/10.4081/ija.2021.1976 DOI: https://doi.org/10.4081/ija.2021.1976

Bogale A and Tesfaye K (2016) Relationship between grain yield and yield components of the Ethiopian durum wheat genotypes at various growth stages. Tropical and Subtropical Agroecosystems 19(1): 81-91. http://www.redalyc.org/articulo.oa?id=93945700007 DOI: https://doi.org/10.56369/tsaes.1419

Boudersa N, Chaib G, Cherfia R, Atoui A and Boudour L (2021) Biological and agronomic characterization of bread wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) cultivated in the region of Constantine, Algeria. South Asian Journal Experimental Biology 11(5): 572-582. https://doi.org/10.38150/sajeb.11(5).p572-582 DOI: https://doi.org/10.38150/sajeb.11(5).p572-582

Chaouachi L, Marín-Sanz M, Kthiri Z et al (2023) The opportunity of using durum wheat landraces to tolerate drought stress: screening morpho-physiological components. AoB Plants 15(3): plad022. https://doi.org/10.1093/aobpla/plad022 DOI: https://doi.org/10.1093/aobpla/plad022

Chourghal N, Belguerri H, Maamri K et al (2023) Diagnosis of the rainfall-wheat yield relationship in the current and future climate change conditions in Eastern Algeria. Biosystems Diversity 31(2): 158–162. https://doi.org/10.15421/012316 DOI: https://doi.org/10.15421/012316

Chowdhury JA, Karim MA, Khaliq QA and Ahmed AU (2017) Effect of drought stress on bio-chemical change and cell membrane stability of soybean genotypes. Bangladesh Journal of Agricultural Research 42(3): 475- 485. https://doi.org/10.3329/bjar.v42i3.34506 DOI: https://doi.org/10.3329/bjar.v42i3.34506

Del Pozo A, Yáñez A, Iván AM, Gerardo T et al (2016) Physiological traits associated with wheat yield potential and performance under water-stress in a Mediterranean environment. Frontiers in Plant Science 7: http://doi.org/10.3389/fpls.2016.00987 DOI: https://doi.org/10.3389/fpls.2016.00987

Djoudi MBI, Cheniti K, Guendouz A and Louahdi N (2024) Modeling the grain yield loss and quality assessment of some durum wheat (Triticum durum Desf.) genotypes under semi-arid conditions. Revista Facultad Nacional de Agronomía Medellín 77(1): 10563-10572. DOI: https://doi.org/10.15446/rfnam.v77n1.108026

Fellahi Z, Hannachi A, Guendouz A, Rabti A and Bouzerzour H (2019) Héritabilité, corrélations et gain de sélection précoce en F2 de blé tendre (Triticum aestivum L.) sous conditions semi-arides. Scientific and Technical Research Centre for Arid Areas (CRSTRA) Journal Algérien des Régions Arides (JARA) 13(2): 37– 49.

Feng F, Han Y, Wang S et al (2018) The effect of grain position on genetic improvement of grain number and thousand grain weight in winter wheat in North China. Frontiers in Plant Science 9: 129. https://doi.org/10.3389/fpls.2018.00129 DOI: https://doi.org/10.3389/fpls.2018.00129

Frih B, Oulmi A, Guendouz A, Bendada H and Selloum S (2021) Statistical Analysis of the relationships between yield and yield components in some durum wheat (Triticum durum desf.) genotypes growing under semi-arid conditions. International Journal of Bio-resource and Stress Management 12(4): 385-392. https://doi.org/10.23910/1.2021.2431 DOI: https://doi.org/10.23910/1.2021.2431

González-Ribot G, Opazo M, Silva P and Acevedo E (2017) Traits explaining durum wheat (Triticum turgidum spp. durum) yield in dry Chilean Mediterranean environments. Frontiers in Plant Science 8: 1781. https://doi.org/10.3389/fpls.2017.01781 DOI: https://doi.org/10.3389/fpls.2017.01781

Guendouz A, Frih B and Oulmi A (2021) Canopy Cover temperature & drought tolerance indices in durum wheat (Triticum durum Desf.) genotypes under semi-arid condition in Algeria. International Journal of Bio-resource and Stress Management 12(6): 638-644. https://doi.org/10.23910/1.2021.2508 DOI: https://doi.org/10.23910/1.2021.2508

Guendouz A, Semcheddine N, Moumeni L and Hafsi M (2016) The effect of supplementary irrigation on leaf area, specific leaf weight, grain yield and water use efficiency in durum wheat (Triticum durum Desf.) cultivars. Ekin Journal of Crop Breeding and Genetics 2(1): 82-89.

Hannachi A and Fellahi Z (2023) Efficiency of index-based selection for potential yield in durum wheat [Triticum turgidum (L.) ssp. turgidum convar. durum (Desf.) Mackey] lines. Italian Journal of Agronomy 18(1): https://doi.org/10.4081/ija.2023.2182 DOI: https://doi.org/10.4081/ija.2023.2182

Hu N, Du C, Zhang W et al (2022) Did wheat breeding simultaneously improve grain yield and quality of wheat cultivars releasing over the past 20 years in China. Agronomy 12 (9): 2109. https://doi.org/10.3390/agronomy12092109 DOI: https://doi.org/10.3390/agronomy12092109

Hussain S, Shaukat M, Ashraf M et al (2019) Salinity stress in arid and semi-arid climates: Effects and management in field crops. Climate Change and Agriculture 13: 201-226. https://doi.org/10.5772/intechopen.87982 DOI: https://doi.org/10.5772/intechopen.87982

Iqbal MA (2015) Plant nutrients supplementation with foliar application of allelopathic water extracts improves wheat (Triticum aestivum L.) yield. Advance in Agriculture and Biology 4 (2): 64-70. DOI: https://doi.org/10.15192/PSCP.AAB.2015.4.2.6470

Iqbal T, Hassan G, Hussain I and Saeed S (2017) Assessment of yield components and their association in f2 populations of wheat. Journal of Scientific Agriculture 1: 326-334. https://doi.org/10.25081/jsa.2017.v1.849 DOI: https://doi.org/10.25081/jsa.2017.v1.849

ITGC - Institut technique des grandes cultures en Algérie (2022) La production de blé.

Jian H, Wang J, Wang T et al (2016) Identification of rapeseed microRNAs involved in early stage seed germination under salt and drought stresses. Frontiers in Plant Science 7: 658. https://doi.org/10.3389/fpls.2016.00658 DOI: https://doi.org/10.3389/fpls.2016.00658

Kardile PB, Dahatonde KN, Rakshe MV and Burondkar MM (2018) Effect of moisture stress on leaf relative water content (RWC) of four cowpea (Vigna unguiculata L. Walp.) genotypes at different stages of growth. International Journal of Current Microbiology and Applied Sciences 7 (04): 2645-2649. https://doi.org/10.20546/ijcmas.2018.704.301 DOI: https://doi.org/10.20546/ijcmas.2018.704.301

Kaya LG, Çetin M and Doygun H (2015) A holistic approach in analyzing the landscape potential: Porsuk Dam Lake and its environs, Turkey. Fresenius Environmental Bulletin 18(8): 1525-1533.

Keyvan S (2010) The effects of drought stress on yield, relative water content, proline, soluble carbohydrates and chlorophyll of bread wheat cultivars. Journal of Animal & Plant Sciences 8(3): 1051-1060.

Bayoumi YA, Dakhly DM, Bassiouny YA and Hashish NM (2015) Addition of growth hormone to the microflare stimulation protocol among women with poor ovarian response. International Journal of Gynecology & Obstetrics 131(3): 305-308. https://doi.org/10.1016/j.ijgo.2015.05.034 DOI: https://doi.org/10.1016/j.ijgo.2015.05.034

Kohila S and Gomathi R (2018) Adaptive physiological and biochemical response of sugarcane genotypes to high temperature stress. Indian Journal of Plant Physiology 23(2): 245–260. https://doi.org/10.1007/s40502-018-0363-y DOI: https://doi.org/10.1007/s40502-018-0363-y

Krishnamurthy L, Zaman-Allah M, Purushothaman R et al (2011) Plant biomass productivity under abiotic stresses in SAT agriculture. Biomass-Detection, Production and Usage 247-264. https://doi.org/10.5772/17279 DOI: https://doi.org/10.5772/17279

Liu H, Searle IR, Mather DE et al (2015) Morphological, physiological and yield responses of durum wheat to pre-anthesis water-deficit stress are genotype-dependent. Crop and Pasture Science 66(10): 1024-1038. https://doi.org/10.1071/CP15013 DOI: https://doi.org/10.1071/CP15013

MajidiMehr A, El Gataa Z, Abyar S and Nourinejad H (2024) Genetic variability and evaluation of water-deficit stress tolerant of spring bread wheat genotypes using drought tolerance indices. Ecological Genetics and Genomics 100-227. https://doi.org/10.1016/j.egg.2024.100227 DOI: https://doi.org/10.1016/j.egg.2024.100227

Mamrutha HM, Rinki, Singh SK et al (2022) Abiotic stress tolerance in wheat: physiological interventions. pp. 507-530. In: New Horizons in Wheat and Barley Research: Global Trends, Breeding and Quality Enhancement. Springer Singapore, Singapore. https://doi.org/10.1007/978-981-16-4449-8_20 DOI: https://doi.org/10.1007/978-981-16-4449-8_20

Mansouri A, Oudjehih B, Benbelkacem A et al (2018) Variation and relationships among agronomic traits in durum wheat [Triticum turgidum (L.) Thell. ssp. Turgidum conv. durum (Desf.) Mackey] under south Mediterranean growth conditions: Stepwise and path analyses. International Journal of Agronomy. https://doi.org/10.1155/2018/8191749 DOI: https://doi.org/10.1155/2018/8191749

Mao H, Li S, Chen B et al (2022) Variation in cis-regulation of a NAC transcription factor contributes to drought tolerance in wheat. Molecular Plant, Research Article 15(2): 276-292. https://doi.org/10.1016/j.molp.2021.11.007 DOI: https://doi.org/10.1016/j.molp.2021.11.007

Mekaoussi R, Rabti A, Fellahi Z et al (2021) Assessment of durum wheat (Triticum durum Desf.) genotypes based on their agro-physiological characteristics and stress tolerance indices. Acta Agriculturae Slovenica 117/2–2021. https://doi.org/10.14720/aas.2021.117.2.2021 DOI: https://doi.org/10.14720/aas.2021.117.2.2021

Melandri G, Prashar A, McCouch S et al (2020) Association mapping and genetic dissection of drought-induced canopy temperature differences in rice. Journal of Experimental Botany 71(4): 1614-1627. https://doi.org/10.1093/jxb/erz527 DOI: https://doi.org/10.1093/jxb/erz527

Mohammadi M, Sharifi P and Karimizadeh R (2014) Stability Analysis of durum wheat genotypes by regression parameteres in dryland conditions. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis 62(5): 1049–1056. https://doi.org/10.11118/actaun201462051049 DOI: https://doi.org/10.11118/actaun201462051049

Mohammadi R, Etminan A and Shoshtari L (2018) Agrophysiological characterization of durum wheat genotypes under drought conditions. Experimental Agriculture 55(3): 484-499. https://doi.org/10.1017/S0014479718000133 DOI: https://doi.org/10.1017/S0014479718000133

Naveed M, Hussain MB, Zahir ZA et al (2014) Drought stress amelioration in wheat through inoculation with Burkholderia phytofirmans strain PsJN. Plant Growth Regul 73:121–131. https://doi.org/10.1007/s10725-013-9874-8 DOI: https://doi.org/10.1007/s10725-013-9874-8

Nor A, Abdul RH, Mohd R, Norain MN and Nur I (2015) Correlation Analysis on Agronomic Characters in F1 population derived from a cross of Pongsu Seribu 2 and MR 264. Conference Title: R and D Seminar 2014: Research and Development Seminar.

Nouri A, Etminan A, Jaime A, Teixeira da Silva JA and Mohammadi R (2011) Assessment of yield, yield-related traits and drought tolerance of durum wheat genotypes (Triticum turjidum var. durum Desf.). Australian journal of crop science AJCS 5(1):8-16.

Othmani A, Sourour A, Zoubeir C and Ben Younes M (2021) Screening for PEG-induced drought stress tolerance in seedlings of durum wheat (Triticum durum Desf.) cultivars. Pakistan Journal of Botany 53(3), 823-832. DOI: https://doi.org/10.30848/PJB2021-3(5)

Oulmi A, Guendouz A, Semcheddine et al (2020) Study of direct response and related to the early selection of durum wheat (triticum durum desf.) genotypes growing under semi-arid conditions. PONTE Journal 12-1(76), 249 267. https://doi.org/10.21506/j.ponte.2020.12.13 DOI: https://doi.org/10.21506/j.ponte.2020.12.13

Pask AJD, Pietragalla J, Mullan DM and Reynolds MP (2012) Physiological breeding II: A field guide to wheat phenotyping. Mexico D. F. CIMMYT. Mexico. 132 p.

Pour-Aboughadareh A, Mohammadi R, Etminan A et al (2020) Effects of drought stress on some agronomic and morpho-physiological traits in durum wheat genotypes. Sustainability 12(14): 5610. https://doi.org/10.3390/su12145610 DOI: https://doi.org/10.3390/su12145610

Ramadan T, Sayed SA, Abd-Elaal KA and Amro A (2022) The combined effect of water deficit stress and TiO2 nanoparticles on cell membrane and antioxidant enzymes in Helianthus annuus L. Physiology and Molecular Biology of Plants 28 (2): 391–409. https://doi.org/10.1007/s12298-022-01153-z DOI: https://doi.org/10.1007/s12298-022-01153-z

Rehman SU, Muhammad Bilal A, Rashid MR, Muhammad NT et al (2016) Cell membrane stability and chlorophyll content variation in wheat (Triticum aestivum L) genotypes under heat and drought conditions. Crop and Pasture Science. https://doi.org/10.1071/CP15385 DOI: https://doi.org/10.1071/CP15385

Singh B, Kumar S, Elangovan A et al (2023) Phenomics based prediction of plant biomass and leaf area in wheat using machine learning approaches. Frontiers in Plant Science 14: 1214801. https://doi.org/10.3389/fpls.2023.1214801 DOI: https://doi.org/10.3389/fpls.2023.1214801

Singh SK, Barman M, Prasad JP and Bahuguna RN (2022) Phenotyping diverse wheat genotypes under terminal heat stress reveal canopy temperature as critical determinant of grain yield. Plant Physiology Reports 27: 335–344. http://doi.org/10.1007/s40502-022-00647-y DOI: https://doi.org/10.1007/s40502-022-00647-y

Slama A, Mallek-Maalej E, Ben Mohamed H et al (2018) A return to the genetic heritage of durum wheat to cope with drought heightened by climate change. PLoS ONE 13 (5): e0196873. https://doi.org/10.1371/journal.pone.0196873 DOI: https://doi.org/10.1371/journal.pone.0196873

Sohail M, Hussain I, Qamar M et al (2020) Evaluation of spring wheat genotypes for climatic adaptability using canopy temperature as physiological indicator. Pakistan Journal of Agricultural Research 33(1): 89-96. http://doi.org/10.17582/journal.pjar/2020/33.1.89.96 DOI: https://doi.org/10.17582/journal.pjar/2020/33.1.89.96

Spagnoletti-Zeuli PL and Qualset CO (1990) Flag leaf variation and the analysis of diversity in durum wheat. Plant Breeding 105 (3): 189–202. https://doi.org/10.1111/j.1439-0523.1990.tb01196.x DOI: https://doi.org/10.1111/j.1439-0523.1990.tb01196.x

Thapa S, Jessup KE, Pradhan GP et al (2018) Canopy temperature depression at grain filling correlates to winter wheat yield in the U.S. Southern High Plains. Field Crops Research 217: 11-19. https://doi.org/10.1016/j.fcr.2017.12.005 DOI: https://doi.org/10.1016/j.fcr.2017.12.005

Tshikunde NM, Mashilo J, Shimelis H and Odindo A (2019) Agronomic and physiological traits, and associated quantitative trait loci (QTL) affecting yield response in wheat (Triticum aestivum L.): A review. Frontiers Plant Sciences 10:1428. https://doi.org/10.3389/fpls.2019.01428 DOI: https://doi.org/10.3389/fpls.2019.01428

Ullah MI, Mahpara S, Bibi R et al (2021) Grain yield and correlated traits of bread wheat lines: Implications for yield improvement. Saudi Journal of Biological Sciences. 28(10): 5714-5719. https://doi.org/10.1016/j.sjbs.2021.06.006 DOI: https://doi.org/10.1016/j.sjbs.2021.06.006

Wang J, Liu H, Zhao C et al (2022) Mapping and validation of major and stable QTL for flag leaf size from tetraploid wheat. The Plant Genome 15: e20252. https://doi.org/10.1002/tpg2.20252 DOI: https://doi.org/10.1002/tpg2.20252

Wolde GM, Mascher M and Schnurbusch T (2019) Genetic modification of spikelet arrangement in wheat increases grain number without significantly affecting grain weight. Molecular Genetics and Genomics 294: 457–468. http://doi.org/10.1007/s00438-018-1523-5 DOI: https://doi.org/10.1007/s00438-018-1523-5

Würschum T, Leiser WL, Langer SM, Tucker MR and Longin CFH (2018) Phenotypic and genetic analysis of spike and kernel characteristics in wheat reveals long-term genetic trends of grain yield components. Theoretical and Applied Genetics 131: 2071–2084. https://doi.org/10.1007/s00122-018-3133-3 DOI: https://doi.org/10.1007/s00122-018-3133-3

Xynias I, Mylonas I, Korpetis G et al (2020) Durum wheat breeding in the mediterranean region: Current status and future prospects. Agronomy 10: 432. https://doi.org/10.3390/agronomy10030432 DOI: https://doi.org/10.3390/agronomy10030432

Yang B, Wen X, Wen H et al (2022) Identification and validation of quantitative trait loci for chlorophyll content of flag leaf in wheat under different phosphorus treatments. Frontiers in Plant Science. 13: 1019012. https://doi.org/10.3389/fpls.2022.1019012 DOI: https://doi.org/10.3389/fpls.2022.1019012

How to Cite

APA

Benkadja, S., Oulmi, A., Guendouz, A. and Frih, B. (2024). Assessment of agro-physiological traits for identifying drought-tolerant durum wheat (Triticum durum Desf.) genotypes under rainfed conditions. Revista Facultad Nacional de Agronomía Medellín, 77(2), 10717–10727. https://doi.org/10.15446/rfnam.v77n2.108152

ACM

[1]
Benkadja, S., Oulmi, A., Guendouz, A. and Frih, B. 2024. Assessment of agro-physiological traits for identifying drought-tolerant durum wheat (Triticum durum Desf.) genotypes under rainfed conditions. Revista Facultad Nacional de Agronomía Medellín. 77, 2 (May 2024), 10717–10727. DOI:https://doi.org/10.15446/rfnam.v77n2.108152.

ACS

(1)
Benkadja, S.; Oulmi, A.; Guendouz, A.; Frih, B. Assessment of agro-physiological traits for identifying drought-tolerant durum wheat (Triticum durum Desf.) genotypes under rainfed conditions. Rev. Fac. Nac. Agron. Medellín 2024, 77, 10717-10727.

ABNT

BENKADJA, S.; OULMI, A.; GUENDOUZ, A.; FRIH, B. Assessment of agro-physiological traits for identifying drought-tolerant durum wheat (Triticum durum Desf.) genotypes under rainfed conditions. Revista Facultad Nacional de Agronomía Medellín, [S. l.], v. 77, n. 2, p. 10717–10727, 2024. DOI: 10.15446/rfnam.v77n2.108152. Disponível em: https://revistas.unal.edu.co/index.php/refame/article/view/108152. Acesso em: 14 aug. 2024.

Chicago

Benkadja, Sarah, Abdelmalek Oulmi, Ali Guendouz, and Benalia Frih. 2024. “Assessment of agro-physiological traits for identifying drought-tolerant durum wheat (Triticum durum Desf.) genotypes under rainfed conditions”. Revista Facultad Nacional De Agronomía Medellín 77 (2):10717-27. https://doi.org/10.15446/rfnam.v77n2.108152.

Harvard

Benkadja, S., Oulmi, A., Guendouz, A. and Frih, B. (2024) “Assessment of agro-physiological traits for identifying drought-tolerant durum wheat (Triticum durum Desf.) genotypes under rainfed conditions”, Revista Facultad Nacional de Agronomía Medellín, 77(2), pp. 10717–10727. doi: 10.15446/rfnam.v77n2.108152.

IEEE

[1]
S. Benkadja, A. Oulmi, A. Guendouz, and B. Frih, “Assessment of agro-physiological traits for identifying drought-tolerant durum wheat (Triticum durum Desf.) genotypes under rainfed conditions”, Rev. Fac. Nac. Agron. Medellín, vol. 77, no. 2, pp. 10717–10727, May 2024.

MLA

Benkadja, S., A. Oulmi, A. Guendouz, and B. Frih. “Assessment of agro-physiological traits for identifying drought-tolerant durum wheat (Triticum durum Desf.) genotypes under rainfed conditions”. Revista Facultad Nacional de Agronomía Medellín, vol. 77, no. 2, May 2024, pp. 10717-2, doi:10.15446/rfnam.v77n2.108152.

Turabian

Benkadja, Sarah, Abdelmalek Oulmi, Ali Guendouz, and Benalia Frih. “Assessment of agro-physiological traits for identifying drought-tolerant durum wheat (Triticum durum Desf.) genotypes under rainfed conditions”. Revista Facultad Nacional de Agronomía Medellín 77, no. 2 (May 1, 2024): 10717–10727. Accessed August 14, 2024. https://revistas.unal.edu.co/index.php/refame/article/view/108152.

Vancouver

1.
Benkadja S, Oulmi A, Guendouz A, Frih B. Assessment of agro-physiological traits for identifying drought-tolerant durum wheat (Triticum durum Desf.) genotypes under rainfed conditions. Rev. Fac. Nac. Agron. Medellín [Internet]. 2024 May 1 [cited 2024 Aug. 14];77(2):10717-2. Available from: https://revistas.unal.edu.co/index.php/refame/article/view/108152

Download Citation

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Article abstract page views

87

Downloads

Download data is not yet available.