Published

2024-05-01

Effect of warm temperature and water shortages on early growth of Lepidium meyenii Walpers

Efecto de la temperatura cálida y el déficit hídrico en el crecimiento temprano de Lepidium meyenii Walpers

DOI:

https://doi.org/10.15446/rfnam.v77n2.108243

Keywords:

Andean crop, Climate change , Maca, Seedlings, Temperature (en)
Cultivo andino, Cambio climático , Maca, Plántulas, Temperatura (es)

Downloads

Authors

Increasing water deficits and warming temperatures due to climate change threaten agricultural systems in the Peruvian Andes, where environmental conditions are themselves challenging. Lepidium meyenii Walpers also known as "maca" is an endemic root crop that can tolerate adverse conditions such as low temperatures and high UV radiation, but little is known about its response to drought. This study aimed to test the effect on maca germination and early seedling growth of water restriction under two maximum temperatures: 15 °C (current scenario) and 20 °C (warming scenario). Water restriction had either a direct or a temperature-dependent effect on germination and above ground seedling growth, which was greater at 15 °C. By contrast, its effects on seedlings growing at 20 °C were completely overcome by faster germination, initial growth, and biomass acquisition. The results are consistent with those from other crops and contribute to the understanding of how climate change is affecting high-mountain agriculture.

El aumento de los déficits de agua y las temperaturas más cálidas debido al cambio climático amenazan los sistemas agrícolas en los Andes peruanos, donde las condiciones ambientales son desafiantes. Lepidium meyenii Walpers, también conocida como “maca”, es un cultivo de raíz endémico que puede tolerar condiciones adversas como bajas temperaturas y alta radiación ultravioleta, pero se sabe poco sobre su respuesta a la sequía. El objetivo de este estudio fue evaluar el efecto de la restricción hídrica sobre la germinación de maca y el crecimiento temprano de las plántulas en dos temperaturas máximas: 15 °C (escenario actual) y 20 °C (escenario de calentamiento). Se encontró que la restricción hídrica tuvo un efecto directo o dependiente de la temperatura sobre la germinación y el crecimiento foliar de las plántulas, que fue mayor a 15 °C. Por el contrario, sus efectos sobre las plántulas que crecieron a 20 °C fueron completamente superados por una germinación más rápida, crecimiento inicial y adquisición de biomasa. Los resultados son consistentes con los de otros cultivos y contribuyen a la comprensión de cómo el cambio climático está afectando a la agricultura de alta montaña.

References

Celikkol Akcay U, Ercan O, Kavas M, Yildiz L et al (2010) Droughtinduced oxidative damage and antioxidant responses in peanut (Arachis hypogaea L.) seedlings. Plant Growth Regulation 61(1): 21-28. https://doi.org/10.1007/s10725-010-9445-1 DOI: https://doi.org/10.1007/s10725-010-9445-1

Fahad S, Bajwa AA, Nazir U et al (2017) Crop production under drought and heat stress: plant responses and management options. Frontiers in Plant Science 8: 1147. https://doi.org/10.3389/fpls.2017.01147 DOI: https://doi.org/10.3389/fpls.2017.01147

Farooq M, Wahid A, Kobayashi N and Fujita DB (2009) Plant drought stress: effects, mechanisms and management. Agronomy for Sustainable Development 29: 185–212. https://doi.org/10.1051/agro:2008021 DOI: https://doi.org/10.1051/agro:2008021

Giráldez L, Silva Y, Zubieta R and Sulca J (2020) Change of the rainfall seasonality over Central Peruvian Andes: Onset, end, duration and its relationship with large-scale atmospheric circulation. Climate 8(2): 23. https://doi.org/10.3390/cli8020023 DOI: https://doi.org/10.3390/cli8020023

González MV, Sadras VO, Equiza MA and Tognetti JA (2009) Suboptimal temperature favors reserve formation in biennial carrot (Daucus carota) plants. Physiologia plantarum 137(1): 10-21. https://doi.org/10.1111/j.1399-3054.2009.01247.x DOI: https://doi.org/10.1111/j.1399-3054.2009.01247.x

Huarancca-Reyes T, Esparza E, Crestani G et al (2020) Physiological responses of maca (Lepidium meyenii Walp.) plants to UV radiation in its high-altitude mountain ecosystem. Scientific Reports 10: 1–13. https://doi.org/10.1038/s41598-020-59638-4 DOI: https://doi.org/10.1038/s41598-020-59638-4

Kader MA (2005) A comparison of seed germination calculation formulae and the associated interpretation of resulting data. Journal & Proceedings of the Royal Society of New South Wales 138: 65–75. https://royalsoc.org.au/images/pdf/journal/138_Kader.pdf DOI: https://doi.org/10.5962/p.361564

Khan S, Ullah A, Ullah S et al (2022) Quantifying Temperature and osmotic stress impact on seed germination rate and seedling growth of Eruca sativa Mill. via hydrothermal time model. Life 12(3): 400. https://doi.org/10.3390/life12030400 DOI: https://doi.org/10.3390/life12030400

Lahlou O and Ledent JF (2005) Root mass and depth, stolons and roots formed on stolons in four cultivars of potato under water stress. European Journal of Agronomy 22(2): 159-173. https://doi.org/10.1016/j.eja.2004.02.004 DOI: https://doi.org/10.1016/j.eja.2004.02.004

Lin D, Xia J and Wan S (2010) Climate warming and biomass accumulation of terrestrial plants: a meta-analysis. New Phytologist 188(1): 187-198. https://doi.org/10.1111/j.1469-8137.2010.03347.x DOI: https://doi.org/10.1111/j.1469-8137.2010.03347.x

Mahalingam R (2015) Chapter 1 - Consideration of combined stress: a crucial paradigm for improving multiple stress tolerance in plants. pp 1-25. In: Mahalingam R. (ed.). Combined stresses in plants: physiological, molecular, and biochemical aspects. Springer, Cham, Switzerland. 264 p. DOI: https://doi.org/10.1007/978-3-319-07899-1_1

Michel BE (1983) Evaluation of the water potentials of solutions of polyethylene glycol 8000 both in the absence and presence of other solutes. Plant Physiology 72: 66–70. https://doi.org/10.1104/pp.72.1.66 DOI: https://doi.org/10.1104/pp.72.1.66

Mokhberdoran F, Nabavi Kalat SM and Sadrabadi Haghighi R (2009) Effect of temperature, iso-osmotic concentrations of NaCl and PEG agents on germination and some seedling growth yield components in rice (Oryza sativa L.). Asian Journal of Plant Sciences 8: 409–416. https://doi.org/10.3923/ajps.2009.409.416 DOI: https://doi.org/10.3923/ajps.2009.409.416

Poorter H and Nagel O (2000) The role of biomass allocation in the growth response of plants to different levels of light, CO2, nutrients and water: a quantitative review. Functional Plant Biology 27(12): 1191-1191. http://doi.org/10.1071/PP99173_CO DOI: https://doi.org/10.1071/PP99173_CO

Restrepo-Díaz H, Chávez-Arias CC, Ligarreto-Moreno GA and Ramírez-Godoy A (2021) Maize responses challenged by drought, elevated daytime temperature and arthropod herbivory stresses: A physiological, biochemical and molecular view. Frontiers in Plant Science 12:1512. https://doi.org/10.3389/fpls.2021.702841 DOI: https://doi.org/10.3389/fpls.2021.702841

Rolando JL, Turin C, Ramírez DA, Mares V et al (2017) Key ecosystem services and ecological intensification of agriculture in the tropical high-Andean Puna as affected by land-use and climate changes. Agriculture, Ecosystems & Environment 236: 221-233. https://doi.org/10.1016/j.agee.2016.12.010 DOI: https://doi.org/10.1016/j.agee.2016.12.010

SENAMHI (2020) Tendencias históricas de precipitación y temperatura - TENDHIS. In: SENAMHI. https://www.senamhi.gob.pe/tendenciashistoricas/

Schneider CA, Rasband WS and Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nature Methods 9(7): 671-675. https://doi.org/10.1038/nmeth.2089 DOI: https://doi.org/10.1038/nmeth.2089

Shah S, Ullah S, Ali S, Khan A et al (2021) Using mathematical models to evaluate germination rate and seedlings length of chickpea seed (Cicer arietinum L.) to osmotic stress at cardinal temperatures. PloS one 16(12): e0260990. https://doi.org/10.1371/journal.pone.0260990 DOI: https://doi.org/10.1371/journal.pone.0260990

Shi Y, Su Z, Yang H et al (2019) Alternative splicing coupled to nonsense-mediated mRNA decay contributes to the high-altitude adaptation of maca (Lepidium meyenii). Gene 694: 7–18. https://doi.org/10.1016/j.gene.2018.12.082 DOI: https://doi.org/10.1016/j.gene.2018.12.082

Thibeault JM, Seth A and Garcia M (2010) Changing climate in the Bolivian Altiplano: CMIP3 projections for temperature and precipitation extremes. Journal of Geophysical Research Atmospheres 115: 1–18. https://doi.org/10.1029/2009JD012718 DOI: https://doi.org/10.1029/2009JD012718

Tourneux C, Devaux A, Camacho MR, Mamani P and Ledent JF (2003) Effects of water shortage on six potato genotypes in the highlands of Bolivia (I): morphological parameters, growth and yield. Agronomie 23: 169–179. https://doi.org/10.1051/agro:2002079 DOI: https://doi.org/10.1051/agro:2002079

Valqui-Peña D, Clark D, Gianoli E and Gonzáles WL (2021) Temperature regime influences accessions and effectiveness of germination promoters in the high-Andean crop maca. Agronomy Journal 113(3): 2557-2566. https://doi.org/10.1002/agj2.20688 DOI: https://doi.org/10.1002/agj2.20688

Verslues PE, Agarwal M, Katiyar-Agarwal S, Zhu J and Zhu JK (2006) Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. Plant Journal 45: 523–539. https://doi.org/10.1111/j.1365-313X.2005.02593.x DOI: https://doi.org/10.1111/j.1365-313X.2005.02593.x

Vuille M, Franquist E, Garreaud R, Lavado Casimiro WS and Cáceres B (2015) Impact of the global warming hiatus on Andean temperature. Journal of Geophysical Research: Atmospheres 120(9): 3745–3757. https://doi.org/10.1002/2015JD023126 DOI: https://doi.org/10.1002/2015JD023126

Wang Y, Wang Y, McNeil B and Harvey LM (2007) Maca: An Andean crop with multi-pharmacological functions. Food Research International 40: 783–792. https://doi.org/10.1016/j.foodres.2007.02.005 DOI: https://doi.org/10.1016/j.foodres.2007.02.005

Wang ZQ, Zhao QM, Zhong X et al (2020) Comparative analysis of maca (Lepidium meyenii) proteome profiles reveals insights into response mechanisms of herbal plants to high-temperature stress. BMC plant biology 20: 431. https://doi.org/10.1186/s12870-020-02645-4 DOI: https://doi.org/10.1186/s12870-020-02645-4

Zeid IM and Shedeed ZA (2006) Response of alfalfa to putrescine treatment under drought stress. Biologia Plantarum 50: 635–640. https://doi.org/10.1007/s10535-006-0099-9 DOI: https://doi.org/10.1007/s10535-006-0099-9

Zhang C, Shi S, Wang B and Zhao J (2018) Physiological and biochemical changes in different drought-tolerant alfalfa (Medicago sativa L.) varieties under PEG-induced drought stress. Acta Physiologiae Plantarum 40: 1–15. https://doi.org/10.1007/s11738-017-2597-0 DOI: https://doi.org/10.1007/s11738-017-2597-0

Zhang J, Tian Y, Yan L et al (2016) Genome of plant maca (Lepidium meyenii) illuminates genomic basis for high-altitude adaptation in the Central Andes. Molecular Plant 9:1066–1077. https://doi.org/10.1016/j.molp.2016.04.016 DOI: https://doi.org/10.1016/j.molp.2016.04.016

How to Cite

APA

Valqui-Peña, D., Yon Torres, F., Clark Leza, D. and Gonzáles, W. L. (2024). Effect of warm temperature and water shortages on early growth of Lepidium meyenii Walpers. Revista Facultad Nacional de Agronomía Medellín, 77(2), 10699–10705. https://doi.org/10.15446/rfnam.v77n2.108243

ACM

[1]
Valqui-Peña, D., Yon Torres, F., Clark Leza, D. and Gonzáles, W.L. 2024. Effect of warm temperature and water shortages on early growth of Lepidium meyenii Walpers. Revista Facultad Nacional de Agronomía Medellín. 77, 2 (May 2024), 10699–10705. DOI:https://doi.org/10.15446/rfnam.v77n2.108243.

ACS

(1)
Valqui-Peña, D.; Yon Torres, F.; Clark Leza, D.; Gonzáles, W. L. Effect of warm temperature and water shortages on early growth of Lepidium meyenii Walpers. Rev. Fac. Nac. Agron. Medellín 2024, 77, 10699-10705.

ABNT

VALQUI-PEÑA, D.; YON TORRES, F.; CLARK LEZA, D.; GONZÁLES, W. L. Effect of warm temperature and water shortages on early growth of Lepidium meyenii Walpers. Revista Facultad Nacional de Agronomía Medellín, [S. l.], v. 77, n. 2, p. 10699–10705, 2024. DOI: 10.15446/rfnam.v77n2.108243. Disponível em: https://revistas.unal.edu.co/index.php/refame/article/view/108243. Acesso em: 3 aug. 2024.

Chicago

Valqui-Peña, David, Felipe Yon Torres, Daniel Clark Leza, and Wilfredo L. Gonzáles. 2024. “Effect of warm temperature and water shortages on early growth of Lepidium meyenii Walpers”. Revista Facultad Nacional De Agronomía Medellín 77 (2):10699-705. https://doi.org/10.15446/rfnam.v77n2.108243.

Harvard

Valqui-Peña, D., Yon Torres, F., Clark Leza, D. and Gonzáles, W. L. (2024) “Effect of warm temperature and water shortages on early growth of Lepidium meyenii Walpers”, Revista Facultad Nacional de Agronomía Medellín, 77(2), pp. 10699–10705. doi: 10.15446/rfnam.v77n2.108243.

IEEE

[1]
D. Valqui-Peña, F. Yon Torres, D. Clark Leza, and W. L. Gonzáles, “Effect of warm temperature and water shortages on early growth of Lepidium meyenii Walpers”, Rev. Fac. Nac. Agron. Medellín, vol. 77, no. 2, pp. 10699–10705, May 2024.

MLA

Valqui-Peña, D., F. Yon Torres, D. Clark Leza, and W. L. Gonzáles. “Effect of warm temperature and water shortages on early growth of Lepidium meyenii Walpers”. Revista Facultad Nacional de Agronomía Medellín, vol. 77, no. 2, May 2024, pp. 10699-05, doi:10.15446/rfnam.v77n2.108243.

Turabian

Valqui-Peña, David, Felipe Yon Torres, Daniel Clark Leza, and Wilfredo L. Gonzáles. “Effect of warm temperature and water shortages on early growth of Lepidium meyenii Walpers”. Revista Facultad Nacional de Agronomía Medellín 77, no. 2 (May 1, 2024): 10699–10705. Accessed August 3, 2024. https://revistas.unal.edu.co/index.php/refame/article/view/108243.

Vancouver

1.
Valqui-Peña D, Yon Torres F, Clark Leza D, Gonzáles WL. Effect of warm temperature and water shortages on early growth of Lepidium meyenii Walpers. Rev. Fac. Nac. Agron. Medellín [Internet]. 2024 May 1 [cited 2024 Aug. 3];77(2):10699-705. Available from: https://revistas.unal.edu.co/index.php/refame/article/view/108243

Download Citation

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Article abstract page views

53

Downloads

Download data is not yet available.