Published

2024-05-01

Association between weeds and plant growthpromoting rhizobacteria in the phytoremediation of lead-contaminated soil

Asociación entre malezas y rizobacterias promotoras del crecimiento vegetal en la fitorremediación de suelo contaminado con plomo

DOI:

https://doi.org/10.15446/rfnam.v77n2.108353

Keywords:

Bacterial consortia, Echinochloa colona (L.) Link, Lead tolerance, Phytotoxicity, Synergy (en)
Consorcios bacterianos, Echinochloa colona (L.) Link, Tolerancia al plomo, Fitoxicidad, Sinergia (es)

Downloads

Authors

Lead is a persistent heavy metal in the soil that can accumulate in edible plants, so non-polluting strategies are required for its removal. In this study, the efficiency of weeds with associated rhizobacteria in phytoremediation of soil contaminated with lead (800 ppm) was investigated. Weeds with lead tolerance were selected, as well as rhizobacteria that promote plant growth in vitro. Several bacterial consortia (BC) were applied on three weed species, and the weight of the aboveground biomass of the weeds, the phytotoxicity of the soil after phytoremediation, as well as the parameters of the phytoremediation of lead in the soil with lower phytotoxicity, were evaluated. As a result, 20% of the weeds analyzed were tolerant to lead with indices of 0.80 (Echinochloa colona (L.) Link), 0.76 (Cyperus corymbosus Rottb.), and 0.72 (Sorghum halepense). BC solubilized phosphates, produced indole acetic acid, and increased the fresh biomass of plants (4.14-14.32%). Furthermore, the lowest level of phytotoxicity in the soil was detected in the treatment of E. colona (L.) Link with Pseudomonas spp. and Acinetobacter spp. (BC1), as well as a bioaccumulation factor of 0.1650 in the foliage, 1.0250 in the roots, and a translocation factor of 0.1611. Finally, 78.83% lead removal was determined in E. colona (L.) Link with rhizobacteria, compared to the 57.58% obtained with E. colona (L.) Link without rhizobacteria. The efficiency of the association of weeds and plant growth-promoting rhizobacteria in the phytoremediation of soils contaminated with lead was demonstrated.

El plomo es un metal pesado persistente en el suelo que puede acumularse en las plantas comestibles, por lo que se requieren estrategias no contaminantes para su remoción. En este estudio se investigó la eficiencia de malezas con rizobacterias asociadas en la fitorremediación de suelo contaminado con plomo (800 ppm). Se seleccionaron malezas con tolerancia al plomo, así como rizobacterias que promueven el crecimiento vegetal in vitro. Se aplicaron diversos consorcios bacterianos (CB) sobre tres especies de malezas, y se evaluó el peso de la biomasa aérea de las malezas, la fitotoxicidad del suelo después de la fitorremediación, así como los parámetros de la fitorremediación del plomo en el suelo con menor fitotoxicidad. Se encontró que el 20% de las malezas analizadas fueron tolerantes al plomo con índices de 0,80 (Echinochloa colona (L.) Link), 0,76 (Cyperus corymbosus Rottb) y 0,72 (Sorghum halepense). Los CB solubilizaron fosfatos, produjeron ácido indol acético y aumentaron la biomasa fresca de las plantas (4,14-14,32%). Además, el menor nivel de fitotoxicidad en el suelo se detectó en el tratamiento de E. colona (L.) Link con Pseudomonas spp. y Acinetobacter spp. (CB1), así como un factor de bioacumulación de 0,1650 en el follaje, 1,0250 en las raíces y un factor de translocación de 0,1611. Finalmente, se determinó 78,83% de remoción de plomo en E. colona (L.) Link con rizobacterias, a comparación del 57,58% obtenido con E. colona (L.) Link sin rizobacterias. Se demostró la eficiencia de la asociación de malezas y rizobacterias promotoras del crecimiento vegetal en la fitorremediación de suelos contaminados con plomo.

References

Abdelrahman A and Younggy K (2022) Isolation of Pb(II)-reducing bacteria and demonstration of biological Pb(II) reduction to metallic Pb. Journal of Hazardous Materials 423: 126975. https://doi.org/10.1016/j.jhazmat.2021.126975 DOI: https://doi.org/10.1016/j.jhazmat.2021.126975

Acosta L and Bustamante D (2020) Caracterización de microorganismos oxidantes del azufre y su potencial para la recuperación de suelo sódico con la aplicación de azufre (Tesis para optar el título profesional). Universidad Nacional Pedro Ruiz Gallo. Lambayeque, Perú. 82 p.

Álvarez-López C, Osorio-Vega W, Diéz-Gómez M et al (2014) Biochemical characterization of rhizosphere microorganisms from vanilla plants with potential as biofertilizers. Agronomía Mesoamericana 25: 225-241. https://doi.org/10.15517/am.v25i2.15426 DOI: https://doi.org/10.15517/am.v25i2.15426

Amadi N and Gbosidom V (2022) Assessment of heavy metal uptake ability of Echinochloa colona in orange peel amended soil. International Journal of Advanced Research in Biological Sciences 9: 40-48. https://ijarbs.com/pdfcopy/2022/jan2022/ijarbs5.pdf

Chaturvedi R, Favas P, Pratas J et al (2020) Harnessing Pisum sativum-Glomus mosseae symbiosis for phytoremediation of soil contaminated with lead, cadmium, and arsenic. International Journal of Phytoremediation 23: 279-290. http://doi.org/10.1080/15226514.2020.1812507 DOI: https://doi.org/10.1080/15226514.2020.1812507

Contreras H and Carreño C (2018) Eficiencia de la biodegradación de hidrocarburos de petróleo por hongos filamentosos aislados de suelo contaminado. Revista de Investigación Científica UNTRM: Ciencias Naturales e Ingeniería 1: 27-33. https://doi.org/10.25127/ucni.v1i1.269 DOI: https://doi.org/10.25127/ucni.v1i1.269

Contreras-Pinto L, Valencia C, De la Fuente N et al (2016) Estudio de absorción, acumulación y potencial para la remediación de suelo contaminado por plomo usando Ambrosia ambrosioides. Investigación y Desarrollo en Ciencia y Tecnología de Alimentos 1: 244-250. http://www.fcb.uanl.mx/IDCyTA/files/volume1/1/2/41.pdf

Corrales L, Caycedo L, Gómez M et al (2017) Bacillus spp: una alternativa para la promoción vegetal por dos caminos enzimáticos. NOVA 15: 45-65. https://revistas.unicolmayor.edu.co/index.php/nova/article/view/588 DOI: https://doi.org/10.22490/24629448.1958

Covarrubias S and Peña J (2017) Contaminación ambiental por metales pesados en México: Problemática y estrategias de fitoremediación. Revista Internacional de Contaminación Ambiental 33: 7 21. https://doi.org/10.20937/RICA.2017.33.esp01.01 DOI: https://doi.org/10.20937/RICA.2017.33.esp01.01

Dipak P and Sinha S (2017) Isolation and characterization of phosphate solubilizing bacterium Pseudomonas aeruginosa KUPSB12 with antibacterial potential from river Ganga, India. Annals of Agrarian Science 15: 130-136. http://doi.org/10.1016/j.aasci.2016.10.001 DOI: https://doi.org/10.1016/j.aasci.2016.10.001

Frachia C, Navarro V, da Silva W et al (2022) Inga uruguensis response to lead: effects on growth and nitrogenous compounds. Rodriguésia 73: e01652020. https://doi.org/10.1590/2175-7860202273063 DOI: https://doi.org/10.1590/2175-7860202273063

Gamalero E and Glick B (2022) Recent advances in bacterial amelioration of plant drought and salt stress. Biology 11: 437. https://doi.org/10.3390/biology11030437 DOI: https://doi.org/10.3390/biology11030437

Gavrilescu M (2022) Enhancing phytoremediation of soils polluted with heavy metals. Current Opinion in Biotechnology 74: 21-31. https://doi.org/10.1016/j.copbio.2021.10.024 DOI: https://doi.org/10.1016/j.copbio.2021.10.024

Gorelova S, Muratova A, Zinicovscaia I et al (2022) Prospects for the use of Echinochloa frumentacea for phytoremediation of soils with multielement anomalies. Soil Systems 6: 27. https://doi.org/10.3390/soilsystems6010027 DOI: https://doi.org/10.3390/soilsystems6010027

Gupta P, Kumar V, Usmani Z et al (2018) Phosphate solubilization and chromium (VI) remediation potential of Klebsiella sp. strain CPSB4 isolated from the chromium contaminated agricultural soil. Chemosphere 192: 318-327. https://doi.org/10.1016/j.chemosphere.2017.10.164 DOI: https://doi.org/10.1016/j.chemosphere.2017.10.164

Lakhal D, Boutaleb N, Bahlaouan B et al (2017) Mixture experimental design in the development of a bio fertilizer from fish waste, molasses and scum. International Journal of Engineering Research & Technology 6: 588–594. https://www.ijert.org/mixtureexperimental-design-in-the-development-of-a-bio-fertilizer-from-fishwaste-molasses-and-scum

Liu A, Wang W, Zheng X et al (2022) Improvement of the Cd and Zn phytoremediation efficiency of rice (Oryza sativa) through the inoculation of a metal-resistant PGPR strain. Chemosphere 302: 134900. https://doi.org/10.1016/j.chemosphere.2022.134900 DOI: https://doi.org/10.1016/j.chemosphere.2022.134900

Liu C, Lin H, Dong Y et al (2018) Investigation on microbial community in remediation of lead contaminated soil by Trifolium repens L. Ecotoxicology and Environmental Safety 165: 52-60. https://doi.org/10.1016/j.ecoenv.2018.08.054 DOI: https://doi.org/10.1016/j.ecoenv.2018.08.054

Lu N, Li G, Sun Y et al (2021) Phytoremediation potential of four native plants in soils contaminated with lead in a mining area. Land 10: 1129. https://doi.org/10.3390/land10111129 DOI: https://doi.org/10.3390/land10111129

Manzoor M, Gul I, Ahmed I et al (2019) Metal tolerant bacteria enhanced phytoextraction of lead by two accumulator ornamental species. Chemosphere 227: 561-569. https://doi.org/10.1016/j.chemosphere.2019.04.093 DOI: https://doi.org/10.1016/j.chemosphere.2019.04.093

MINAM – Ministerio del Ambiente (2017) Aprueban Estándares de Calidad Ambiental (ECA) para Suelo. Decreto Supremo N° 011-2017-MINAM. Peru. https://www.gob.pe/institucion/minam/normaslegales/3693-011-2017-minam

Nakbanpote W, Meesungnoen O and Prasad M (2016) Potential of ornamental plants for phytoremediation of heavy metals and income generation. Bioremediation and Bioeconomy 2016: 179-217. https://doi.org/10.1016/B978-0-12-802830-8.00009-5 DOI: https://doi.org/10.1016/B978-0-12-802830-8.00009-5

Rigoletto M, Calza P, Gaggero E et al (2020) Bioremediation methods for the recovery of lead-contaminated soils: A Review. Applied Sciences 10: 3528. https://doi.org/10.3390/app10103528 DOI: https://doi.org/10.3390/app10103528

Rodríguez R, Cuéllar L, Maldonado C et al (2016) Efectos nocivos del plomo para la salud del hombre. Revista Cubana de Investigaciones Biomédicas 35: 251-271. https://www.medigraphic.com/cgi-bin/new/resumen.cgi?IDARTICULO=70505

Sabreena, Hassan S, Bhat S et al (2022) Phytoremediation of heavy metals: an indispensable contrivance in green remediation technology. Plants 11: 1255. https://doi.org/10.3390/plants11091255 DOI: https://doi.org/10.3390/plants11091255

Salas-Marcial C, Garduño-Ayala M, Mendiola-Ortiz P et al (2019) Fuentes de contaminación por plomo en alimentos, efectos en la salud y estrategias de prevención. Revista Iberoamericana de Tecnología Postcosecha 20: 1-15. https://www.redalyc.org/articulo.oa?id=81359562002

Salazar E and Nieves B (2005) Acinetobacter spp. Aspectos microbiológicos, clínicos y epidemiológicos. Revista de la Sociedad Venezolana de Microbiología 25: 64-71. http://caelum.ucv.ve/ojs/index.php/rev_vm/article/view/444

Shah V and Daverey A (2020) Phytoremediation: a multidisciplinary approach to clean up heavy metal contaminated soil. Environmental Technology & Innovation 18: 100774. https://doi.org/10.1016/j.eti.2020.100774 DOI: https://doi.org/10.1016/j.eti.2020.100774

Silva J, Avello C, Matamoro F et al (1999) Antimicrobial resistance of different Acinetobacter baumanni biotypes isolated in the northern region of Chile. Revista médica de Chile 127: 926-934. https://doi.org/10.4067/S0034-98871999000800006 DOI: https://doi.org/10.4067/S0034-98871999000800006

Zhu X, Li X, Shen B et al (2022) Bioremediation of lead-contaminated soil by inorganic phosphate-solubilizing bacteria immobilized on biochar. Ecotoxicology and Environmental Safety 237: 113524. https://doi.org/10.1016/j.ecoenv.2022.113524 DOI: https://doi.org/10.1016/j.ecoenv.2022.113524

How to Cite

APA

Muro-Del Valle, S. D., Mago-Córdova, A., Carreño-Farfán, C., Sánchez-Purihuamán, M., Caro-Castro, J. and Carbajal-Gamarra, M. (2024). Association between weeds and plant growthpromoting rhizobacteria in the phytoremediation of lead-contaminated soil. Revista Facultad Nacional de Agronomía Medellín, 77(2), 10667–10677. https://doi.org/10.15446/rfnam.v77n2.108353

ACM

[1]
Muro-Del Valle, S.D., Mago-Córdova, A., Carreño-Farfán, C., Sánchez-Purihuamán, M., Caro-Castro, J. and Carbajal-Gamarra, M. 2024. Association between weeds and plant growthpromoting rhizobacteria in the phytoremediation of lead-contaminated soil. Revista Facultad Nacional de Agronomía Medellín. 77, 2 (May 2024), 10667–10677. DOI:https://doi.org/10.15446/rfnam.v77n2.108353.

ACS

(1)
Muro-Del Valle, S. D.; Mago-Córdova, A.; Carreño-Farfán, C.; Sánchez-Purihuamán, M.; Caro-Castro, J.; Carbajal-Gamarra, M. Association between weeds and plant growthpromoting rhizobacteria in the phytoremediation of lead-contaminated soil. Rev. Fac. Nac. Agron. Medellín 2024, 77, 10667-10677.

ABNT

MURO-DEL VALLE, S. D.; MAGO-CÓRDOVA, A.; CARREÑO-FARFÁN, C.; SÁNCHEZ-PURIHUAMÁN, M.; CARO-CASTRO, J.; CARBAJAL-GAMARRA, M. Association between weeds and plant growthpromoting rhizobacteria in the phytoremediation of lead-contaminated soil. Revista Facultad Nacional de Agronomía Medellín, [S. l.], v. 77, n. 2, p. 10667–10677, 2024. DOI: 10.15446/rfnam.v77n2.108353. Disponível em: https://revistas.unal.edu.co/index.php/refame/article/view/108353. Acesso em: 9 sep. 2024.

Chicago

Muro-Del Valle, Sergio Daniel, Alejandro Mago-Córdova, Carmen Carreño-Farfán, Marilín Sánchez-Purihuamán, Junior Caro-Castro, and Martin Carbajal-Gamarra. 2024. “Association between weeds and plant growthpromoting rhizobacteria in the phytoremediation of lead-contaminated soil”. Revista Facultad Nacional De Agronomía Medellín 77 (2):10667-77. https://doi.org/10.15446/rfnam.v77n2.108353.

Harvard

Muro-Del Valle, S. D., Mago-Córdova, A., Carreño-Farfán, C., Sánchez-Purihuamán, M., Caro-Castro, J. and Carbajal-Gamarra, M. (2024) “Association between weeds and plant growthpromoting rhizobacteria in the phytoremediation of lead-contaminated soil”, Revista Facultad Nacional de Agronomía Medellín, 77(2), pp. 10667–10677. doi: 10.15446/rfnam.v77n2.108353.

IEEE

[1]
S. D. Muro-Del Valle, A. Mago-Córdova, C. Carreño-Farfán, M. Sánchez-Purihuamán, J. Caro-Castro, and M. Carbajal-Gamarra, “Association between weeds and plant growthpromoting rhizobacteria in the phytoremediation of lead-contaminated soil”, Rev. Fac. Nac. Agron. Medellín, vol. 77, no. 2, pp. 10667–10677, May 2024.

MLA

Muro-Del Valle, S. D., A. Mago-Córdova, C. Carreño-Farfán, M. Sánchez-Purihuamán, J. Caro-Castro, and M. Carbajal-Gamarra. “Association between weeds and plant growthpromoting rhizobacteria in the phytoremediation of lead-contaminated soil”. Revista Facultad Nacional de Agronomía Medellín, vol. 77, no. 2, May 2024, pp. 10667-7, doi:10.15446/rfnam.v77n2.108353.

Turabian

Muro-Del Valle, Sergio Daniel, Alejandro Mago-Córdova, Carmen Carreño-Farfán, Marilín Sánchez-Purihuamán, Junior Caro-Castro, and Martin Carbajal-Gamarra. “Association between weeds and plant growthpromoting rhizobacteria in the phytoremediation of lead-contaminated soil”. Revista Facultad Nacional de Agronomía Medellín 77, no. 2 (May 1, 2024): 10667–10677. Accessed September 9, 2024. https://revistas.unal.edu.co/index.php/refame/article/view/108353.

Vancouver

1.
Muro-Del Valle SD, Mago-Córdova A, Carreño-Farfán C, Sánchez-Purihuamán M, Caro-Castro J, Carbajal-Gamarra M. Association between weeds and plant growthpromoting rhizobacteria in the phytoremediation of lead-contaminated soil. Rev. Fac. Nac. Agron. Medellín [Internet]. 2024 May 1 [cited 2024 Sep. 9];77(2):10667-7. Available from: https://revistas.unal.edu.co/index.php/refame/article/view/108353

Download Citation

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Article abstract page views

168

Downloads

Download data is not yet available.