Published

2026-01-15

Comparative proteomic analysis of low-abundant whey proteins in sow and goat colostrum

Análisis proteómico comparativo de proteínas del suero de baja abundancia en calostro de cerda y cabra

DOI:

https://doi.org/10.15446/rfnam.v79.118309

Keywords:

Gene ontology, Milk proteome, Murciano-Granadina breed, Passive immunity, Pigs, Protein–protein interaction (en)
Ontología génica, Proteoma de la leche, Raza murciano-granadina, Inmunidad pasiva, cerdos, Interacción proteína-proteína (es)

Downloads

Authors

  • Monica Marcela Segura Restrepo Grupo de Investigación Biodiversidad y Genética Molecular “BIOGEM”. Facultad de Ciencias Agrarias, Universidad Nacional de Colombia, Sede Medellín. Colombia. https://orcid.org/0009-0001-1837-7995
  • Verónica González Cadavid Grupo de Investigación Biodiversidad y Genética Molecular “BIOGEM”. Facultad de Ciencias Agrarias, Universidad Nacional de Colombia, Sede Medellín. Colombia. https://orcid.org/0000-0002-3349-5543
  • Fabián Leonardo Rueda Alfonso Grupo de Investigación en Reproducción Tropical. Corporación Colombiana de Investigación Agropecuaria, Agrosavia; Centro de Investigación Tibaitatá, Cundinamarca. Colombia. https://orcid.org/0000-0002-5502-2544
  • Silvia Martínez Miró Department of Animal Production, Faculty of Veterinary, Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, Murcia, Spain. https://orcid.org/0000-0002-1350-0886
  • Fuensanta Hernández Ruiperez Department of Animal Production, Faculty of Veterinary, Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, Murcia, Spain. https://orcid.org/0000-0002-8795-416X

This study compared the whey proteome of sow colostrum (SC) and goat colostrum (GC) using shotgun proteomics combined with protein equalization techniques (CPLL or ProteoMiner) to enhance the detection of low-abundance proteins. Colostrum samples were pooled from 11 hand-milked sows (20 mL each, collected at 0 h postpartum), while GC samples (2 liters total) were collected from 50 goats during morning milking on day 1 postpartum. A total of 86 low-abundance proteins (<30 kDa) were identified: 26 unique to SC, 32 to GC, and 14 shared. Major whey proteins, including α-S1, α-S2, β-casein, κ-casein, and lactotransferrin (LTF), were present in both colostra. Gene Ontology (GO) enrichment showed that SC proteins were mainly linked to biological regulation (49.04%) and immune response (11.49%), whereas GC proteins were associated with metabolic processes (26.98%) and biological regulation (26.43%), likely reflecting species-specific physiological differences. Protein–protein interaction (PPI) analysis identified highly connected proteins such as LTF, α-lactalbumin, β-casein, Apolipoprotein, and Clusterin in both networks, with additional interactions involving serum albumin in SC. GC displayed unique interactions with Glycam-1, a glycosylated adhesion molecule related to the milk mucin complex, though its immune role remains unclear. These findings provide novel insight into the functional whey proteome of SC and GC, particularly regarding low-abundance proteins, and highlight the value of shotgun proteomics with protein equalization. Surplus goat colostrum emerges as a sustainable heterologous source to enhance piglet survival in hyperprolific systems. The study also underscores the need for parallel gel replicates to minimize technical variability in future proteomic analyses.

Este estudio comparó el proteoma del suero del calostro de cerda (SC) y del calostro de cabra (GC) utilizando proteómica shotgun combinada con técnicas de ecualización de proteínas (CPLL o ProteoMiner) para mejorar la detección de proteínas de baja abundancia. Se prepararon muestras de calostro agrupadas de 11 cerdas ordeñadas a mano (20 mL cada una, recolectadas a las 0 h posparto), mientras que las muestras de GC (2 litros en total) se recolectaron de 50 cabras durante el ordeño matutino del día 1 posparto. Se identificaron un total de 86 proteínas de baja abundancia (<30 kDa): 26 exclusivas de SC, 32 de GC y 14 compartidas. Las principales proteínas del suero, incluidas α-S1, α-S2, β-caseína, κ-caseína y lactotransferrina (LTF), estuvieron presentes en ambos calostros. El análisis de enriquecimiento de Gene Ontology (GO) mostró que las proteínas de SC se relacionaron principalmente con la regulación biológica (49,04 %) y la respuesta inmune (11,49 %), mientras que las de GC se asociaron con procesos metabólicos (26,98 %) y regulación biológica (26,43 %), lo que probablemente refleja diferencias fisiológicas específicas de cada especie. El análisis de interacción proteína–proteína (PPI) identificó proteínas altamente conectadas como LTF, α-lactalbúmina, β-caseína, apolipoproteína y clusterina en ambas redes, con interacciones adicionales que involucraron albúmina sérica en SC. GC mostró interacciones únicas con Glycam-1, una molécula de adhesión glicosilada relacionada con el complejo de mucinas de la leche, aunque su función inmune sigue sin estar clara. Estos hallazgos proporcionan nueva información sobre el proteoma funcional del suero de SC y GC, particularmente sobre proteínas de baja abundancia, y resaltan el valor de la proteómica shotgun con ecualización de proteínas. El calostro excedente de cabra surge como una fuente heteróloga sostenible para mejorar la supervivencia de lechones en sistemas hiperprolíficos. El estudio también destaca la necesidad de replicados de gel paralelos para minimizar la variabilidad técnica en futuros análisis proteómicos.

References

Akin C, Planchon S, Renaut J et al (2014) Detection of Whey Fraction Common Proteins of Human and Goat Colostrum by MALDI-TOF/TOF. 257–260. https://doi.org/10.3920/9789086868100_065

Aslebagh R, Whitham D, Channaveerappa D et al (2023) Proteomics analysis of human breast milk by two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) coupled with mass spectrometry to assess breast cancer risk. Electrophoresis 44 (13–14):1097–1113. https://doi.org/10.1002/elps.202300040

Ayala L, Gómez-Cortés P, Hernández F et al (2024) Comparison of the Fatty Acid Profiles of Sow and Goat Colostrum. Vet Sci 11(8):341. https://doi.org/10.3390/vetsci11080341

Boschetti E and Righetti PG (2023) Low-Abundance Protein Enrichment for Medical Applications: The Involvement of Combinatorial Peptide Library Technique. Int J Mol Sci 24 (12):10329. https://doi.org/10.3390/ijms241210329

Broyard C and Gaucheron F (2015) Modifications of structures and functions of caseins: a scientific and technological challenge. Dairy Sci Technol 95 (6):831–862. https://doi.org/10.1007/s13594-015-0220-y

Chavatte-Palmer P and Tarrade A (2016) Placentation in different mammalian species. Ann Endocrinol (Paris) 77 (2):67–74. https://doi.org/10.1016/j.ando.2016.04.006

Chen D, Li X, Zhao X et al (2019) Comparative proteomics of goat milk during heated processing. Food Chem 275:504–514. https://doi.org/10.1016/j.foodchem.2018.09.129

Chopra A, Ali SA, Bathla S et al (2020) High-Resolution Mass Spectrometer–Based Ultra-Deep Profile of Milk Whey Proteome in Indian Zebu (Sahiwal) Cattle. Front Nutr 7:150. https://doi.org/10.3389/fnut.2020.00150

Cunsolo V, Fasoli E, Saletti R et al (2015) Zeus, Aesculapius, Amalthea and the proteome of goat milk. J Proteomics 128:69–82. https://doi.org/10.1016/j.jprot.2015.07.009

De Vos M, Huygelen V, Van Raemdonck G et al (2014) Supplementing formula-fed piglets with a low molecular weight fraction of bovine colostrum whey results in an improved intestinal barrier. J Anim Sci 92 (8):3491–3501. https://doi.org/10.2527/jas.2013-6437

Ferreira RF, Blees T, Shakeri F et al (2021) Comparative proteome profiling in exosomes derived from porcine colostrum versus mature milk reveals distinct functional proteomes. J Proteomics 249:104338. https://doi.org/10.1016/J.JPROT.2021.104338

Geraghty NJ, Satapathy S and Wilson MR (2022) The Emerging Roles of Extracellular Chaperones in Complement Regulation. Cells 11(23):3907. https://doi.org/10.3390/cells11233907

Hackmann TJ (2024) New biochemical pathways for forming short-chain fatty acids during fermentation in rumen bacteria*. JDS Communications 5 (3):230–235. https://doi.org/10.3168/jdsc.2023-0427

Hailemariam S, Zhao S, He Y and Wang J (2021) Urea transport and hydrolysis in the rumen: A review. Animal Nutrition 7 (4):989–996. https://doi.org/10.1016/j.aninu.2021.07.002

Hernández-Castellano LE, Almeida AM, Renaut J et al (2016) A proteomics study of colostrum and milk from the two major small ruminant dairy breeds from the Canary Islands: A bovine milk comparison perspective. Journal of Dairy Research 83 (3):366–374. https://doi.org/10.1017/S0022029916000273

Itahana Y, Piens M, Sumida T et al (2007) Regulation of clusterin expression in mammary epithelial cells. Exp Cell Res 313 (5):943–951. https://doi.org/10.1016/j.yexcr.2006.12.010

Jahan M, Kracht S, Ho Y et al (2017) Dietary lactoferrin supplementation to gilts during gestation and lactation improves pig production and immunity. PLoS One 12(10):e0185817. https://doi.org/https://doi.org/10.1371/journal.pone.0185817

Kamau SM, Cheison SC, Chen W et al (2010) Alpha-lactalbumin: Its production technologies and bioactive peptides. Compr Rev Food Sci Food Saf 9:197–212. https://doi.org/10.1111/j.1541-4337.2009.00100.x

Kielkopf CL, Bauer W and Urbatsch IL (2020) Bradford assay for determining protein concentration. Cold Spring Harb Protoc 2020 (4):136–138. https://doi.org/10.1101/pdb.prot102269

Laemmli UK (1970) Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4. Nature 227:680–685

Martínez-Miró S, Naranjo S, Madrid J et al (2020) Evaluation of immunoglobulin G absorption from goat colostrum by newborn piglets. Animals 10 (4):341. https://doi.org/10.3390/ani10040637

NRC - National Research Council, Committee on the Nutrient Requirements of Small Ruminants, Board on Agriculture, Division on Earth & LS (2007) Nutrient requirements of small ruminants: sheep, goats, cervids, and new world camelids, 7th edn. The National Academies Press, Washington.

Ogawa S, Tsukahara T, Nishibayashi R et al (2014) Shotgun proteomic analysis of porcine colostrum and mature milk. Anim Sci J 85 (4):440–448. https://doi.org/10.1111/asj.12165

Poonia A and Shiva (2022) Bioactive compounds, nutritional profile and health benefits of colostrum: a review. Food Production, Processing and Nutrition 4 (1):26. https://doi.org/10.1186/s43014-022-00104-1

Rezaei R, Wu Z, Hou Y et al (2016) Amino acids and mammary gland development: Nutritional implications for milk production and neonatal growth. J Anim Sci Biotechnol 7 (1):20. https://doi.org/10.1186/s40104-016-0078-8

Segura M, Martínez-Miró S, López MJ et al (2020) Effect of parity on reproductive performance and composition of sow colostrum during first 24 h postpartum. Animals 10 (10):1853. https://doi.org/10.3390/ani10101853

Segura MM, Martínez-Miró S, López MJ et al (2025) Effects of Supplementation with Goat Transitional Milk on Mortality, Growth, Rectal Temperature, and IgG Serological Level in Low-Birth-Weight Piglets. Animals 15 (12):1786. https://doi.org/10.3390/ani15121786

Soloshenko KI, Lych IV, Voloshyna IM and Shkotova LV (2020) Polyfunctional properties of goat colostrum proteins and their use. Biopolym Cell 36 (3):197–209. https://doi.org/10.7124/bc.000A2B

Sun Y, Wang C, Sun X and Guo M (2020) Proteomic analysis of whey proteins in the colostrum and mature milk of Xinong Saanen goats. J Dairy Sci 103 (2):1164–1174. https://doi.org/10.3168/jds.2019-17159

Valk-Weeber RL, Nichols K, Dijkhuizen L et al (2021) Variations in N-linked glycosylation of glycosylation-dependent cell adhesion molecule 1 (GlyCAM-1) whey protein: Intercow differences and dietary effects. J Dairy Sci 104 (4):5056–5068. https://doi.org/10.3168/jds.2020-19297

How to Cite

APA

Segura Restrepo, M. M., González Cadavid, V., Rueda Alfonso, F. L., Martínez Miró, S. & Hernández Ruiperez, F. (2026). Comparative proteomic analysis of low-abundant whey proteins in sow and goat colostrum. Revista Facultad Nacional de Agronomía Medellín, 79, e118309. https://doi.org/10.15446/rfnam.v79.118309

ACM

[1]
Segura Restrepo, M.M., González Cadavid, V., Rueda Alfonso, F.L., Martínez Miró, S. and Hernández Ruiperez, F. 2026. Comparative proteomic analysis of low-abundant whey proteins in sow and goat colostrum. Revista Facultad Nacional de Agronomía Medellín. 79, (Jan. 2026), e118309. DOI:https://doi.org/10.15446/rfnam.v79.118309.

ACS

(1)
Segura Restrepo, M. M.; González Cadavid, V.; Rueda Alfonso, F. L.; Martínez Miró, S.; Hernández Ruiperez, F. Comparative proteomic analysis of low-abundant whey proteins in sow and goat colostrum. Rev. Fac. Nac. Agron. Medellín 2026, 79, e118309.

ABNT

SEGURA RESTREPO, M. M.; GONZÁLEZ CADAVID, V.; RUEDA ALFONSO, F. L.; MARTÍNEZ MIRÓ, S.; HERNÁNDEZ RUIPEREZ, F. Comparative proteomic analysis of low-abundant whey proteins in sow and goat colostrum. Revista Facultad Nacional de Agronomía Medellín, [S. l.], v. 79, p. e118309, 2026. DOI: 10.15446/rfnam.v79.118309. Disponível em: https://revistas.unal.edu.co/index.php/refame/article/view/118309. Acesso em: 16 jan. 2026.

Chicago

Segura Restrepo, Monica Marcela, Verónica González Cadavid, Fabián Leonardo Rueda Alfonso, Silvia Martínez Miró, and Fuensanta Hernández Ruiperez. 2026. “Comparative proteomic analysis of low-abundant whey proteins in sow and goat colostrum”. Revista Facultad Nacional De Agronomía Medellín 79 (January):e118309. https://doi.org/10.15446/rfnam.v79.118309.

Harvard

Segura Restrepo, M. M., González Cadavid, V., Rueda Alfonso, F. L., Martínez Miró, S. and Hernández Ruiperez, F. (2026) “Comparative proteomic analysis of low-abundant whey proteins in sow and goat colostrum”, Revista Facultad Nacional de Agronomía Medellín, 79, p. e118309. doi: 10.15446/rfnam.v79.118309.

IEEE

[1]
M. M. Segura Restrepo, V. González Cadavid, F. L. Rueda Alfonso, S. Martínez Miró, and F. Hernández Ruiperez, “Comparative proteomic analysis of low-abundant whey proteins in sow and goat colostrum”, Rev. Fac. Nac. Agron. Medellín, vol. 79, p. e118309, Jan. 2026.

MLA

Segura Restrepo, M. M., V. González Cadavid, F. L. Rueda Alfonso, S. Martínez Miró, and F. Hernández Ruiperez. “Comparative proteomic analysis of low-abundant whey proteins in sow and goat colostrum”. Revista Facultad Nacional de Agronomía Medellín, vol. 79, Jan. 2026, p. e118309, doi:10.15446/rfnam.v79.118309.

Turabian

Segura Restrepo, Monica Marcela, Verónica González Cadavid, Fabián Leonardo Rueda Alfonso, Silvia Martínez Miró, and Fuensanta Hernández Ruiperez. “Comparative proteomic analysis of low-abundant whey proteins in sow and goat colostrum”. Revista Facultad Nacional de Agronomía Medellín 79 (January 15, 2026): e118309. Accessed January 16, 2026. https://revistas.unal.edu.co/index.php/refame/article/view/118309.

Vancouver

1.
Segura Restrepo MM, González Cadavid V, Rueda Alfonso FL, Martínez Miró S, Hernández Ruiperez F. Comparative proteomic analysis of low-abundant whey proteins in sow and goat colostrum. Rev. Fac. Nac. Agron. Medellín [Internet]. 2026 Jan. 15 [cited 2026 Jan. 16];79:e118309. Available from: https://revistas.unal.edu.co/index.php/refame/article/view/118309

Download Citation

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Article abstract page views

12

Downloads

Download data is not yet available.