Mitigation of salt stress in cowpea cultivars by brassinosteroids: physiological and antioxidant responses
Mitigación del estrés salino en cultivares de caupí mediante brasinoesteroides: respuestas fisiológicas y antioxidantes
DOI:
https://doi.org/10.15446/rfnam.v79.118824Keywords:
Antioxidant enzymes, Ionic homeostasis, Lipid peroxidation, Plant biostimulant, Vigna unguiculata (en)Enzimas antioxidantes, Homeostasis iónica, Peroxidación lipídica, Bioestimulante vegetal, Vigna unguiculata (es)
Downloads
Cowpea (Vigna unguiculata (L.) Walp.) is a crucial crop for food security in tropical regions, but its productivity is severely limited by soil salinity. Brassinosteroids (BR) have emerged as promising natural regulators that can enhance plant resilience to abiotic stresses. This study aimed to evaluate the mitigating effect of BR on salt stress in two cowpea cultivars with contrasting tolerance (BRS Tapaihum, tolerant; Manteiguinha, sensitive) by analyzing physiological and biochemical parameters. A completely randomized design was employed in a 2x3x3 factorial scheme, combining two cultivars, three NaCl concentrations (0, 75, and 150 mM), and three BR concentrations (0, 0.2, and 0.4 µM). Key analyses included electrolyte leakage, leaf Na⁺ and K⁺ content, and the activity of antioxidant enzymes, alongside lipid peroxidation (MDA) assessment. Salinity stress (150 mM NaCl) significantly increased electrolyte leakage and sodium accumulation while decreasing potassium content. The activity of antioxidant enzymes was elevated under salt stress. Foliar application of BR significantly mitigated these effects by reducing Na⁺ accumulation, enhancing K⁺ retention, improving the K⁺/Na⁺ ratio, and modulating antioxidant enzyme activity, which consequently decreased oxidative membrane damage (MDA). The tolerant cultivar, BRS Tapaihum, consistently exhibited a superior response to BR application compared to the sensitive Manteiguinha. These results demonstrate that BR application effectively enhances salt stress tolerance in cowpea by improving ionic homeostasis and reinforcing the antioxidant system. This suggests its strong potential as a biostimulant for sustainable cultivation in salinity-affected areas.
El caupí (Vigna unguiculata (L.) Walp.) es un cultivo crucial para la seguridad alimentaria en las regiones tropicales, pero su productividad está severamente limitada por la salinidad del suelo. Los brasinoesteroides (BR) han emergido como prometedores reguladores naturales que pueden mejorar la resiliencia de las plantas a los estreses abióticos. Este estudio tuvo como objetivo evaluar el efecto mitigador de BR sobre el estrés salino en dos cultivares de caupí con tolerancia contrastante (BRS Tapaihum, tolerante; Manteiguinha, sensible) mediante el análisis de parámetros fisiológicos y bioquímicos. Se empleó un diseño completamente aleatorizado en un esquema factorial 2x3x3, combinando dos cultivares, tres concentraciones de NaCl (0, 75 y 150 mM) y tres concentraciones de BR (0, 0,2 y 0,4 µM). Los análisis clave incluyeron la fuga de electrolitos, el contenido de Na⁺ y K⁺ en las hojas y la actividad de las enzimas antioxidantes, junto con la evaluación de la peroxidación lipídica (MDA). El estrés salino (150 mM de NaCl) incrementó significativamente la pérdida de electrolitos y la acumulación de sodio, a la vez que disminuyó el contenido de potasio. La actividad de las enzimas antioxidantes se elevó bajo estrés salino. La aplicación foliar de BR mitigó significativamente estos efectos al reducir la acumulación de Na⁺, mejorar la retención de K⁺, mejorar la relación K⁺/Na⁺ y modular la actividad de las enzimas antioxidantes, lo que, en consecuencia, disminuyó el daño oxidativo a la membrana (DAM). El cultivar tolerante, BRS Tapaihum, mostró consistentemente una respuesta superior a la aplicación de BR en comparación con el cultivar sensible Manteiguinha. Estos resultados demuestran que la aplicación de BR mejora eficazmente la tolerancia al estrés salino en el caupí al mejorar la homeostasis iónica y reforzar el sistema antioxidante. Esto sugiere su gran potencial como bioestimulante para el cultivo sostenible en zonas afectadas por la salinidad.
References
Alp A, Çelik S and Parlak D (2017) Determination of salt tolerance characteristics of some bread wheat cultivars. AgroLife Scientific Journal 6(2): 16–20. https://www.researchgate.net/publication/348327609_Determination_of_the_salt_tolerance_characteristic_of_some_bread_wheat_cultivars
Abdelgawad H, Zinta G, Hegab MM, Pandey R et al (2016) High Salinity Induces Different Oxidative Stress and Antioxidant Responses in Maize Seedlings Organs. Frontiers in Plant Science 7(1): 276. https://doi.org/10.3389/fpls.2016.00276
Akrami M and Arzani A (2018) Physiological alterations due to feld salinity stress in melon (Cucumis melo L.). Acta Physiologiae Plantarum 40(91): 1-14. https://doi.org/10.1007/s11738-018-2657-0
Andrade Júnior WP, Pereira FHF, Fernandes OB, Queiroga RCF and Queiroga FM (2011) Effect of potassium nitrate on the reduction of saline stress on melon plant. Revista Caatinga 24: 110-119.
Alvarez RDCF, Taveira AC, Lima SF, Teodoro LPR, Oliveira JT, Santos A and Teodoro PE (2021) Genetic Diversity of Cowpea Genotypes Grown in the Brazilian Cerrado. HortScience 56(1): 28-29. https://doi.org/10.21273/HORTSCI15514-20
Bali AS and Sidhu GPS (2019) Abiotic stress – Induced oxidative stress in wheat. Springer Nature Singapore 1(1): 225–239. https://doi.org/10.1007/978-981-13-6883-7_10
Bhering LL and Teodoro PE (2021) Estatística experimental no Rbio. 1.ed. – Curitiba: Brazil Publishing, 478 p. ISBN: 978-65-5861-360-2.
Cabreira LP, Oliveira JT, Baio FHR, Oliveira RA and Cunha FF (2024) Economic feasibility of center pivot irrigation with corn cowpea and soybean crops in sandy soils. Engenharia Agrícola 44: e20230137. https://www.scielo.br/j/eagri/a/KTBRTZPdGCphpXMYpvpCmjk/?format=html&lang=en
Cruz RMS, Jesus RA, Souza MPF, Cagnini C et al (2019) Crescimento inicial e resposta estomática de milho pipoca sob estresse salino. Colloquium Agrariae, 15(1): p. 15-26. https://journal.unoeste.br/index.php/ca/article/view/2381
El-Banna MF, Al-Huqail AA, Farouk S, Belal BE et al (2022) Morpho-physiological and anatomical alterations of salt-affected thompson seedless grapevine (Vitis vinifera L.) to brassinolide spraying. Horticulturae, 8(7), 568. https://doi.org/10.3390/horticulturae8070568
Halliwell B and Gutteridge JMC (2007) Free Radicals in Biology and Medicine (3rd ed.). Oxford University Press. Pag: 928 Editor: Oxford University Press. ISBN: 978-0-19-920978-9.
Hasanuzzaman M, Nahar K, Anel TI and Fujita M (2017) Glutathione in plants: biosynthesis and physiological role in environmental stress tolerance. Physiology and Molecular Biology of Plants 23(2): 249-268. https://doi.org/10.1007/s12298-017-0422-2
Horn LN and Shimelis H (2020) Production constraints and breeding approaches for cowpea improvement for drought prone agro-ecologies in Sub-Saharan Africa. Annals of Agricultural Sciences. 65(1): 83–91. https://doi.org/10.1016/j.aoas.2020.03.002
Li T, Li Y, Sun Z, Xi X, Sha G et al (2021) Resveratrol alleviates the KCl salinity stress of Malus hupehensis Rhed. Frontiers in Plant Science, 12, 650485. https://doi.org/10.3389/fpls.2021.650485
Moharramnejad S and Valizadeh M (2014) Assessment of oxidative stress tolerance in red bean (Phaseolus vulgaris L.) seedling under salinity. International Journal of Agronomy and Agricultural Research Bangladesh 5(6): 49–56. ISSN: 2225-3610.
Nafie EM, Khalfallah AA and Mansur RM (2015) Syndrome effects of NaCl and epibrassinolide on certain molecular and biochemical activities of salt-sensitive c Brunco L. grown under in vitro condition. Life Science Journal 12(7): 119–136. https://www.researchgate.net/publication/310327352_Syndrome_effects_of_NaCl_and_Epibrassinolide_on_certain_molecular_and_biochemical_activities_of_salt-sensitive_Phaseolus_vulgariscv_Brunco_L_grown_under_in_vitro_condition
Oliveira FDA, Oliveira MKT, Lima LA, Cássia Alves R, Lima Régis LR and Santos ST (2017) Estresse salino e biorregulador vegetal em feijão-caupi. Revista Irriga. Botucatu 22(2): 314-329. https://doi.org/10.15809/irriga.2017v22n2p314-329
Ohashi RS, Nogueira GAS, Cardoso KPS, Brito AEA et al (2020) Effect of brassinoesteroid hormone on oxidants activity of two contrasting cowpea cultivars subjected to saline stress. Australian Journal of Crop Science 14(09): 1479-1486. https://doi.org/10.21475/ajcs.20.14.09.p2603
Planas-Riverola A, Gupta A, Putze IB, Bosch N et al (2019) Brassinosteroid signaling in plant development and adaptation to stress. Development 146(151894): 1-11. https://doi.org/10.1242/dev.151894
Vásquez MN, Guerrero YR, Noval WT, González LM and Zullo MAT (2019) Advances on exogenous applications of brassinosteroids and their analogs to enhance plant tolerance to salinity: A review. Australian Journal of Crop Science 13(1): 115-121. https://doi.org/10.21475/ajcs.19.13.01.p1404
Wang ZY and He JX (2017) Brassinosteroid signal transduction – choices of signals and receptors. Trends in Plant Science 9(2): 91-96. https://doi.org/10.1016/j.tplants.2003.12.009
Yusuf M, Khan TA and Fariduddim Q (2016) Responses of photosynthesis stress markers and antioxidants under aluminium salt and combined stresses in wheat cultivars. Congent Food & Agriculture 2(1): 1–17. https://doi.org/10.1080/23311932.2016.1216246
Zhu L, Sun Y, Wang R, Zeng J, Li J et al (2025) Applied potassium negates osmotic stress impacts on plant physiological processes: a meta-analysis. Horticulture Research, 12(2), uhae318.
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License
Copyright (c) 2026 Revista Facultad Nacional de Agronomía Medellín

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The journal allows the author(s) to maintain the exploitation rights (copyright) of their articles without restrictions. The author(s) accept the distribution of their articles on the web and in paper support (25 copies per issue) under open access at local, regional, and international levels. The full paper will be included and disseminated through the Portal of Journals and Institutional Repository of the Universidad Nacional de Colombia, and in all the specialized databases that the journal considers pertinent for its indexation, to provide visibility and positioning to the article. All articles must comply with Colombian and international legislation, related to copyright.
Author Commitments
The author(s) undertake to assign the rights of printing and reprinting of the material published to the journal Revista Facultad Nacional de Agronomía Medellín. Any quotation of the articles published in the journal should be made given the respective credits to the journal and its content. In case content duplication of the journal or its partial or total publication in another language, there must be written permission of the Director.
Content Responsibility
The Faculty of Agricultural Sciences and the journal are not necessarily responsible or in solidarity with the concepts issued in the published articles, whose responsibility will be entirely the author or the authors.






