Biostimulation of Moringa oleifera Lam. seedlings with freshwater microalgae extract (Spirulina)
Bio-estimulación de plántulas de Moringa oleifera Lam. con extracto de microalga dulceacuícola (Spirulina)
DOI:
https://doi.org/10.15446/rfnam.v79.119050Keywords:
Functional food, Mesoamerica, Moringaceae, Photosynthetic pigments (en)Alimento funcional, Mesoamérica, Moringaceae, Pigmentos fotosintéticos (es)
Downloads
The present study investigates the biostimulatory effect of extracts of the freshwater microalgae Spirulina on Moringa oleifera Lam. seedlings. There is a growing need to find sustainable alternatives in agriculture, especially for Moringa cultivation, which is known for its nutritional value and biomass production. This study aimed to evaluate the contribution of Spirulina extracts to the growth, development, and antioxidant components of M. oleifera seedlings grown in a greenhouse. The effect of the extract on plant and root morphology, leaf development indicators, and photosynthetic pigment content was evaluated using complete randomized blocks with four treatments and four replicates. The results showed that biostimulated seedlings with 2, 4, and 6 g L-1 Spirulina grew 13.57, 7, and 9% more compared to the absolute control (AC) (P≤0.01), respectively. The Gompertz, Logistics, and Bertalanffy models suggest that Moringa seedlings invest energy reserves from their cotyledons in the development of aerial organs, and this is compensated by active growth. Likewise, the experimental treatments increased the concentration of α, β, and total chlorophyll by 7, 16.6, and 11.4% compared to AC (P≤0.05). The application of Spirulina represents an effective strategy to optimize the growth of Moringa oleifera and enhance the functional and nutraceutical properties by increasing the content of photosynthetic pigments. This could have positive implications for sustainable agriculture and human and animal nutrition.
El presente estudio investigó el efecto bioestimulante de los extractos de la microalga dulceacuícola Spirulina en plántulas de Moringa oleifera Lam. Existe una creciente necesidad de encontrar alternativas sostenibles en la agricultura, especialmente en el cultivo de la Moringa, reconocida por su valor nutricional y la producción de biomasa. Se planteó como objetivo evaluar la contribución de los extractos de Spirulina al crecimiento, desarrollo y componente antioxidante de plántulas de M. oleifera cultivadas en condiciones de invernadero. Mediante un diseño de bloques completos al azar con cuatro tratamientos y cuatro réplicas se evaluó el efecto de los extractos en la morfología de la planta y de la raíz, en indicadores de desarrollo foliar y contenido de pigmentos fotosintéticos. Los resultados evidenciaron que las plántulas bio-estimuladas con 2, 4 y 6 g L-1 de Spirulina crecieron en 13,57, 7 y 9% más en comparación con el control (CA) (P≤0,01), los modelos de Gompertz, Logístico y Bertalanffy sugirieron que las plántulas de Moringa invierten las reservas energéticas del cotiledón en el desarrollo de órganos aéreos compensado con un crecimiento activo; igualmente los tratamientos experimentales incrementaron la concentración de clorofila α, β y total en 7, 16,6 y 11,4% respecto al CA (P≤0,05). La aplicación de Spirulina constituye una estrategia efectiva para optimizar el crecimiento de Moringa oleifera, y la modificación del carácter funcional o nutracéutico mediante el incremento del contenido de pigmentos fotosintéticos; lo que podría tener implicaciones positivas para la agricultura sostenible, nutrición del hombre y animales.
References
Ak I (2012) Effect of an organic fertilizer on growth of blue-green alga Spirulina platensis. Aquaculture International 20(3): 413-422. https://doi.org/10.1007/s10499-011-9473-5
Al Dayel MF and El Sherif F (2021) Evaluation of the effects of Chlorella vulgaris, Nannochloropsis salina, and Enterobacter cloacae on growth, yield and active compound compositions of Moringa oleifera under salinity stress. Saudi J Biol Sci 28:1687–1696. https://doi.org/10.1016/j.sjbs.2020.12.007
AlFadhly NKZ, Alhelfi N, Altemimi AB et al (2022) Tendencies affecting the growth and cultivation of genus Spirulina: An investigative review on current trends. Plants 11:3063. https://doi.org/10.3390/plants11223063
Azcón-Bieto J and Talón M (2013) Fundamentos de fisiología vegetal, Segunda. McGraw-Hill, Barcelona. 599 p.
Baroud S, Tahrouch S, Hatimi A et al (2019) Effect of Brown Algae on Germination, Growth and Biochemical Composition of Pepper Leaves (Capsicum annuum). Atlas J Biol 611–618. https://doi.org/10.5147/ajb.v0i0.209
Bertalanffy L Von (1957) Quantitative laws in metabolism and growth. The Quarterly review of Biology T 32:333–406.
Ciereszko I (2018) Regulatory roles of sugars in plant growth and development. Acta Societatis Botanicorum Poloniae 87. https://doi.org/10.5586/asbp.3583
Coles ZS and du Toit ES (2020) Open air-layering of Moringa oleifera utilizing seedling plug containers. South African Journal of Botany 129:225–228. https://doi.org/10.1016/j.sajb.2019.07.016
De Saeger J, Van Praet S, Vereecke D et al (2020) Toward the molecular understanding of the action mechanism of Ascophyllum nodosum extracts on plants. J Appl Phycol 32:573–97. https://doi.org/10.1007/s10811-019-01903-9
Drake PL, Froend RH and Franks PJ (2013) Smaller, faster stomata: Scaling of stomatal size, rate of response, and stomatal conductance. J Exp Bot 64:495–505. https://doi.org/10.1093/jxb/ers347
el-Sheekh MM and el-Saied A el-D (2000) Effect of crude seaweed extracts on seed germination, seedling growth and some metabolic processes of Vicia faba L. Cytobios 101:23–35. PMID: 10697743.
FAO - Food and Agriculture Organization (2019) Código internacional de conducta para el uso y manejo de fertilizantes., FAO. Roma. 43 p. https://openknowledge.fao.org/server/api/core/bitstreams/84eb80f8-f446-4703-ac36-352eadac84af/content
Gandji K, Tovissodé FC, Azihou AF et al (2020) Morphological diversity of the agroforestry species Moringa oleifera Lam. as related to ecological conditions and farmers’ management practices in Benin (West Africa). South African Journal of Botany 129:412–422. https://doi.org/10.1016/j.sajb.2019.10.004
Gemin LG, Mógor ÁF, De Oliveira Amatussi J and Mógor G (2019) Microalgae associated to humic acid as a novel biostimulant improving onion growth and yield. Sci Hortic 256:108560. https://doi.org/10.1016/j.scienta.2019.108560
Gupta BM and Ahmed K (2020) Moringa oleifera: A Bibliometric Analysis of International Publications during 1935-2019. International Journal of Library Information Network 14:82–90. https://phcogrev.com/sites/default/files/PharmacognRev-14-28-82.pdf
Iqra-Saddique M (2025) The Health Benefits of Spirulina: A Superfood for the Modern Age. Social Science Review Archives 3:608–618. https://doi.org/10.70670/sra.v3i1.340
Issa R, Boras M and Zidan R (2019) Effect of Seaweed Extract on the Growth and Productivity of Potato Plants. International Journal of Agriculture & Environmental Science 6. https://doi.org/10.14445/23942568/ijaes-v6i2p116
Ledea-Rodríguez JL, Reyes-Pérez JJ, La O-León O, Benítez-Jiménez DG et al (2020) Agroproductive response of Moringa oleifera Lam. in different ages and cutting heights. Tropical and Subtropical Agroecosystems 23(1): 1-9 p. https://www.revista.ccba.uady.mx/ojs/index.php/TSA/article/view/2964/1407
Ledea-Rodríguez JL (2022) Caracterización del crecimiento, desarrollo, producción, morfometría estomática y perfil antioxidante de plántulas de Moringa oleifera Lam., inoculadas con rizobacterias promotoras del crecimiento vegetal. (Tesis PhD), Centro de Investigaciones Biológicas del Noroeste. La Paz, México. 132 p. https://posgrado.cibnor.mx/acervo/MostrarPDF?id=T_2138.PDF
Ma ZF, Ahmad J, Zhang H et al (2020) Evaluation of phytochemical and medicinal properties of Moringa (Moringa oleifera) as a potential functional food. South African Journal of Botany 129:40–46. https://doi.org/10.1016/j.sajb.2018.12.002
Marjanović B, Benković M, Jurina T et al (2024) Bioactive Compounds from Spirulina spp.—Nutritional Value, Extraction, and Application in Food Industry. Separations 11:257. https://doi.org/10.3390/separations11090257
Mohammed S, El-Sheekh MM, Hamed Aly S et al (2023) Inductive role of the brown alga Sargassum polycystum on growth and biosynthesis of imperative metabolites and antioxidants of two crop plants. Front Plant Sci 14. https://doi.org/10.3389/fpls.2023.1136325
Parmar P, Kumar R, Neha Y and Srivatsan V (2023) Microalgae as next generation plant growth additives: Functions, applications, challenges and circular bioeconomy-based solutions. Front Plant Sci 14:1073546. https://doi.org/10.3389/fpls.2023.1073546
Peter AF, Wagiran A, Rahmat Z et al (2023) Exploring Genetic Variation and Therapeutic Properties of Moringa oleifera: Progress and Future Potential for Crop Improvements. Pharmacogn Rev 17. https://doi.org/10.5530/phrev.2023.17.18
Petropoulos SA, Taofiq O, Fernandes  et al (2019) Bioactive properties of greenhouse-cultivated green beans (Phaseolus vulgaris L.) under biostimulants and water-stress effect. J Sci Food Agric 99. https://doi.org/10.1002/jsfa.9881
Shahrajabian MH, Chaski C, Polyzos N and Petropoulos SA (2021) Biostimulants application: A low input cropping management tool for sustainable farming of vegetables. Biomolecules 11:698. https://doi.org/10.3390/biom11050698
Tjørve KMC and Tjørve E (2017) The use of Gompertz models in growth analyses, and new Gompertz-model approach: An addition to the Unified-Richards family. PLoS One 12:1–17. https://doi.org/10.1371/journal.pone.0178691
Valdés Rodríguez OA, Palacios Wassenaar OM, Ruíz Hernández R and Pérez Vásquez A (2018) Potencial de la asociación Moringa y Ricinus en el subtrópico veracruzano. Rev Mex De Cienc Agric 1673–1686. https://doi.org/10.29312/remexca.v0i9.1056
Yalta Vela J, Silva Valqui G, Ampuero Trigoso G et al (2024) Effect of pruning height and organic fertilization on the morphological and productive characteristics of Moringa oleifera Lam. in the Peruvian dry tropics. Open Agric 9. https://doi.org/10.1515/opag-2022-0317
Zayed MS (2012) Improvement of growth and nutritional quality of Moringaoleifera using different biofertilizers. Annals of Agricultural Sciences 57:53–62. https://doi.org/10.1016/j.aoas.2012.03.004
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License
Copyright (c) 2026 Revista Facultad Nacional de Agronomía Medellín

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The journal allows the author(s) to maintain the exploitation rights (copyright) of their articles without restrictions. The author(s) accept the distribution of their articles on the web and in paper support (25 copies per issue) under open access at local, regional, and international levels. The full paper will be included and disseminated through the Portal of Journals and Institutional Repository of the Universidad Nacional de Colombia, and in all the specialized databases that the journal considers pertinent for its indexation, to provide visibility and positioning to the article. All articles must comply with Colombian and international legislation, related to copyright.
Author Commitments
The author(s) undertake to assign the rights of printing and reprinting of the material published to the journal Revista Facultad Nacional de Agronomía Medellín. Any quotation of the articles published in the journal should be made given the respective credits to the journal and its content. In case content duplication of the journal or its partial or total publication in another language, there must be written permission of the Director.
Content Responsibility
The Faculty of Agricultural Sciences and the journal are not necessarily responsible or in solidarity with the concepts issued in the published articles, whose responsibility will be entirely the author or the authors.






