Published

2026-01-15

Micropropagation and genetic characterization of abaca (Musa textilis Nee) varieties

Micropropagación y caracterización genética de variedades de abacá (Musa textilis Née)

DOI:

https://doi.org/10.15446/rfnam.v79.119411

Keywords:

Biotechnology, Fiber crops, Microsatellites, Plant tissue culture, Genetic diversity (en)
Biotecnología, planta textil, Microsatélites, Cultivo de tejidos, Diversidad genética (es)

Downloads

Authors

Abaca (Musa textilis Nee) is a perennial plant of the Musaceae family, highly valued for the fibers obtained from its pseudostem. Costa Rica, the third-largest global producer of this fiber, faces limitations in propagation and variety selection due to its reliance on vegetative material and the limited genetic information available. In this study, efficient protocols were developed for the in vitro establishment and large-scale micropropagation of commercial abaca varieties cultivated in Costa Rica, as well as their genetic characterization using Simple Sequence Repeat (SSR) markers. Effective disinfection of explants derived from corms was achieved, and multiplication rates of 5 to 10 shoots per explant were obtained within 3 to 4 weeks, with plantlets ready for acclimatization in 8 to 12 weeks. Molecular characterization revealed high genetic variability among the analyzed varieties, based on differences in the number and size of the amplicons obtained with SSR markers. The R40 marker showed high discrimination power. These results demonstrate the potential of SSR markers for differentiating abaca genotypes and support their use in genetic improvement and conservation programs. The developed protocols represent a key tool for producing pathogen-free plant material and for strengthening commercial propagation and germplasm conservation strategies for abaca in Costa Rica.

El abacá (Musa textilis Née) es una planta perenne de la familia Musaceae, de gran relevancia por las fibras obtenidas a partir de su pseudotallo. Costa Rica, tercer productor mundial de esta fibra, enfrenta limitaciones en la propagación y en la selección de variedades debido a la dependencia de material vegetativo y a la escasa información genética disponible. En este estudio se desarrollaron protocolos eficientes para el establecimiento in vitro y la micropropagación a gran escala de variedades comerciales de abacá cultivadas en Costa Rica, así como su caracterización genética mediante marcadores de Secuencias Simples Repetidas (SSR). Se logró una desinfección efectiva de explantes provenientes de cormos y una multiplicación de 5 a 10 brotes por explante en un periodo de 3 a 4 semanas, alcanzando la formación de plántulas listas para aclimatación en 8 a 12 semanas. La caracterización molecular evidenció una amplia variabilidad genética entre las variedades analizadas, mediante diferencias en el número y tamaño de los amplicones obtenidos para los marcadores SSR. El marcador R40 mostró un alto poder discriminativo. Estos resultados demuestran el potencial de los SSR para diferenciar genotipos de abacá y respaldan su uso en programas de conservación y mejora genética. Los protocolos desarrollados representan una herramienta clave para la producción de material vegetal libre de patógenos y para el fortalecimiento de estrategias de propagación comercial y conservación del germoplasma de abacá en Costa Rica.

References

Abdalla N, El-Ramady H, Seliem MK, El-Mahrouk ME et al (2022) An academic and technical overview on plant micropropagation challenges. Horticulturae, 8(8): 677. https://doi.org/10.3390/horticulturae8080677

Abdelnour-Esquivel A, Pérez J, Rojas M, Vargas W and Gatica-Arias A (2020) Use of gamma radiation to induce mutations in rice (Oryza sativa L.) and the selection of lines with tolerance to salinity and drought. In Vitro Cellular & Developmental Biology - Plant, 56: 88-97. https://doi.org/10.1007/s11627-019-10015-5

Adamek K, Grainger C, Phineas Jones AM and Torkamaneh D (2023) Genotyping-by-sequencing (GBS) reveals greater somatic mutations than simple sequence repeats (SSRs) in micropropagated cannabis plants. In Vitro Cellular & Developmental Biology – Plant, 59: 757-766. https://doi.org/10.1007/s11627-023-10377-x

Araya-Gutiérrez D, Garro Monge G, Jiménez-Quesada K, Arias-Aguilar D and Quesada Cordero R (2023) Abaca: A general review on its characteristics, productivity, and market in the world. Revista Facultad Nacional de Agronomía, 76(1): 10263-10273. https://doi.org/10.15446/rfnam.v76n1.101710

Araya-Salas M, Arias-Aguilar D, Valverde-Otárola JC, Arias-Ceciliano K et al (2022) Avances en las investigaciones realizadas en cultivos de abacá establecidos en Costa Rica con especial referencia a los sistemas agroforestales. Tecnología en Marcha, 35: 50-59. https://doi.org/10.18845/tm.v35i6.6235

Arias Aguilar D, Araya Salas M, Esquivel Segura E and Jiménez Montero M (2025) Manual técnico para la producción sostenible de abacá (Musa textilis NéeNee) en Costa Rica. Instituto Tecnológico de Costa Rica, Descubre and Promotora de Comercio Exterior de Costa Rica. https://www.descubre.cr/wp-content/uploads/2025/04/Manual-tecnico-para-la-produccion-de-abaca-Musa-textilis-Nee-en-Costa-Rica.pdf

Cardoso JC, Sheng Gerald LT and Teixeira da Silva JA (2018) Chapter 2 - Micropropagation in the twenty-first century. pp 17-46. In: Loyola-Vargas VM and Ochoa-Alejo N (eds.). Plant Cell Culture Protocols. Fourth edition. Humana, New York. 507 p. https://doi.org/10.1007/978-1-4939-8594-4_2

Chen S, Dong M, Zhang Y, Qi S, Liu X, Zhang J and Zhao J (2020) Development and characterization of Simple Sequence Repeat markers for, and genetic diversity analysis of Liquidambar formosana. Forests, 11(2): 203. https://doi.org/10.3390/f11020203

Del Río JC and Gutiérrez A (2006) Chemical composition of abaca (Musa textilis) leaf fibers used for manufacturing of high quality paper pulps. Journal of Agricultural and Food Chemistry, 54(13): 4600-4610. https://doi.org/10.1021/jf053016n

Dewangan N, Sahu K and Bhardwaj H (2020) Revolutionizing molecular biology: The evolution of PCR through troubleshooting and optimization. NewBioWorld, 2(1): 1-17. https://doi.org/10.52228/NBW-JAAB.2020-2-1-3

Gaikwad AB, Kumari R, Yadav S, Rangan P, Wankhede DP and Bhat KV (2023) Small cardamom genome: Development and utilization of microsatellite markers from a draft genome sequence of Elettaria cardamomum Maton. Frontiers in Plant Science, 14: 1161499. https://doi.org/10.3389/fpls.2023.1161499

Hastuti H, Purnomo P, Sumardi I and Daryono BS (2019) Diversity wild banana species (Musa spp.) in Sulawesi, Indonesia. BIODIVERSITAS, 20(3): 824-832. https://doi.org/10.13057/biodiv/d200328

Ishii K and Fukui M (2001) Optimization of annealing temperature to reduce bias caused by a primer mismatch in multitemplate PCR. Applied and Environmental Microbiology, 67(8): 3753-3755. https://doi.org/10.1128%2FAEM.67.8.3753-3755.2001

Jagadeesan B, Gerner-Smidt P, Allard MW, Leuillet S et al (2019) The use of next generation sequencing for improving food safety: Translation into practice. Food Microbiology, 79: 96-115. https://doi.org/10.1016/j.fm.2018.11.005

Kalimuthu K, Saravanakumar M and Senthilkumar R (2007) In vitro micropropagation of Musa sapientum L. (Cavendish Dwarf). African Journal of Biotechnology, 6(9): 1106-1109. ISSN: 1684-5315.

Karimah A, Ridho MR, Munawar SS, Ismadi, Amin Y (2021) A comprehensive review on natural fibers: Technological and socio-economical aspects. Polymers, 13(24): 4280. https://doi.org/10.3390/polym13244280

Khatun F, Hoque ME, Huq H, Adil M, Ashraf-Uz-Zaman K and Rabin MH (2017) Effect of BAP and IBA on in vitro regeneration of local banana variety of Sabri. Biotechnology Journal International, 18(1): 1-10. ISSN: 2231–2927.

Lalusin AG and Villavicencio MLH (2015) Chapter 12 - Abaca (Musa textilis Nee) breeding in the Philippines. pp 265-289. In Cruz VMV and Dierig DA (eds.). Industrial Crops: Breeding for Bioenergy and Bioproducts. First edition. Springer, New York. 444 p. https://doi.org/10.1007/978-1-4939-1447-0_12

Marimuthu Somasundaram S, Subbaraya U, Durairajan SG, Rajendran S et al (2019) Comparison of two different electrophoretic methods in studying the genetic diversity among plantains (Musa spp.) using ISSR markers. Electrophoresis, 40(9): 1265-1272. https://doi.org/10.1002/elps.201800456

Murashige T and Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum, 15(3): 473-497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x

Ngomuo M, Mneney E and Ndakidemi P (2013) The effects of auxins and cytokinin on growth and development of (Musa sp.) var. “Yangambi” explants in tissue culture. American Journal of Plant Sciences, 4(11): 2174-2180. http://doi.org/10.4236/ajps.2013.411269

Orlikowska T, Nowak K and Reed B (2017) Bacteria in the plant tissue culture environment. Plant Cell, Tissue and Organ Culture (PCTOC), 128: 487-508. https://doi.org/10.1007/s11240-016-1144-9

Palomares Dueña J (2013) Agronomic performance and tensile strength analysis of abaca (Musa textilis NEE) hybrids resistant to abaca bunchy top virus (Undergraduate theses). University of the Philippines Los Baños. Los Baños. Phillipines. https://www.ukdr.uplb.edu.ph/etd-undergrad/1226

Patil PG, Singh NV, Bohra A, Raghavendra KP, Mane R et al (2021) Comprehensive characterization and validation of chromosome-specific highly polymorphic SSR markers from pomegranate (Punica granatum L.) cv. Tunisia genome. Frontiers in Plant Science, 12: 645055. https://doi.org/10.3389/fpls.2021.645055

Porta AR and Enners E (2012) Determining annealing temperatures for polymerase chain reaction. The American Biology Teacher, 74(4): 256-260. https://doi.org/10.1525/abt.2012.74.4.9

Priyanka K (2020) Impact of growth regulators on in vitro growth of banana (Musa spp) cultured: A review. International Journal on Agricultural Sciences, 11(1): 34-37. ISSN: 0976-450X.

Ray SS and Ali N (2017) Biotic contamination and possible ways of sterilization: A review with reference to bamboo micropropagation. Brazilian Archives of Biology and Technology, 59: e160485. https://doi.org/10.1590/1678-4324-2016160485

Shah SH, Khan N, Memon SQ, Latif M, Zia MA et al (2020) Effects of auxins and cytokinins on in vitro multiplication of banana (Musa sp.) variety ‘W-11’ in Pakistan. The Journal of Animal & Plant Sciences, 30(1): 98-106. ISSN: 1018-7081.

Sinha AK, Bhattacharya S and Narang HK (2021) Abaca fibre reinforced polymer composites: A review. Journal of Materials Science, 56: 4569-4587. https://doi.org/10.1007/s10853-020-05572-9

Sugiyono, Dewi PR and Prasetyo R (2021) Banana cultivars microshoot induction and plantlet formation using cytokinin and auxin. Caraka Tani: Journal of Sustainable Agriculture, 36(2): 249-258. http://doi.org/10.20961/carakatani.v36i2.50425

Uzaribara E, Nachegowda V, Ansar H, Sathyanarayana BN and Taj A (2015) In vitro propagation of red banana. The Bioscan, 10(1): 125-130. ISSN: 0973-7049.

Yllano O, Diaz M, Lalusin A, Laurena A and Tecson-Mendoza E (2020) Genetic analyses of abaca (Musa textilis Nee) germplasm from its primary center of origin, the Philippines, using simple sequence repeat (SSR) markers. The Philippine Agricultural Scientist, 103(4): 311-321. ISSN: 0031-7454.

How to Cite

APA

Jiménez-Quesada, K., Barboza-Fallas, L., Barrientos-Alfaro, F. C. & Garro-Monge, G. (2026). Micropropagation and genetic characterization of abaca (Musa textilis Nee) varieties. Revista Facultad Nacional de Agronomía Medellín, 79, e119411. https://doi.org/10.15446/rfnam.v79.119411

ACM

[1]
Jiménez-Quesada, K., Barboza-Fallas, L., Barrientos-Alfaro, F.C. and Garro-Monge, G. 2026. Micropropagation and genetic characterization of abaca (Musa textilis Nee) varieties. Revista Facultad Nacional de Agronomía Medellín. 79, (Jan. 2026), e119411. DOI:https://doi.org/10.15446/rfnam.v79.119411.

ACS

(1)
Jiménez-Quesada, K.; Barboza-Fallas, L.; Barrientos-Alfaro, F. C.; Garro-Monge, G. Micropropagation and genetic characterization of abaca (Musa textilis Nee) varieties. Rev. Fac. Nac. Agron. Medellín 2026, 79, e119411.

ABNT

JIMÉNEZ-QUESADA, K.; BARBOZA-FALLAS, L.; BARRIENTOS-ALFARO, F. C.; GARRO-MONGE, G. Micropropagation and genetic characterization of abaca (Musa textilis Nee) varieties. Revista Facultad Nacional de Agronomía Medellín, [S. l.], v. 79, p. e119411, 2026. DOI: 10.15446/rfnam.v79.119411. Disponível em: https://revistas.unal.edu.co/index.php/refame/article/view/119411. Acesso em: 16 jan. 2026.

Chicago

Jiménez-Quesada, Karol, Luis Barboza-Fallas, Frank Carlos Barrientos-Alfaro, and Giovanni Garro-Monge. 2026. “Micropropagation and genetic characterization of abaca (Musa textilis Nee) varieties”. Revista Facultad Nacional De Agronomía Medellín 79 (January):e119411. https://doi.org/10.15446/rfnam.v79.119411.

Harvard

Jiménez-Quesada, K., Barboza-Fallas, L., Barrientos-Alfaro, F. C. and Garro-Monge, G. (2026) “Micropropagation and genetic characterization of abaca (Musa textilis Nee) varieties”, Revista Facultad Nacional de Agronomía Medellín, 79, p. e119411. doi: 10.15446/rfnam.v79.119411.

IEEE

[1]
K. Jiménez-Quesada, L. Barboza-Fallas, F. C. Barrientos-Alfaro, and G. Garro-Monge, “Micropropagation and genetic characterization of abaca (Musa textilis Nee) varieties”, Rev. Fac. Nac. Agron. Medellín, vol. 79, p. e119411, Jan. 2026.

MLA

Jiménez-Quesada, K., L. Barboza-Fallas, F. C. Barrientos-Alfaro, and G. Garro-Monge. “Micropropagation and genetic characterization of abaca (Musa textilis Nee) varieties”. Revista Facultad Nacional de Agronomía Medellín, vol. 79, Jan. 2026, p. e119411, doi:10.15446/rfnam.v79.119411.

Turabian

Jiménez-Quesada, Karol, Luis Barboza-Fallas, Frank Carlos Barrientos-Alfaro, and Giovanni Garro-Monge. “Micropropagation and genetic characterization of abaca (Musa textilis Nee) varieties”. Revista Facultad Nacional de Agronomía Medellín 79 (January 15, 2026): e119411. Accessed January 16, 2026. https://revistas.unal.edu.co/index.php/refame/article/view/119411.

Vancouver

1.
Jiménez-Quesada K, Barboza-Fallas L, Barrientos-Alfaro FC, Garro-Monge G. Micropropagation and genetic characterization of abaca (Musa textilis Nee) varieties. Rev. Fac. Nac. Agron. Medellín [Internet]. 2026 Jan. 15 [cited 2026 Jan. 16];79:e119411. Available from: https://revistas.unal.edu.co/index.php/refame/article/view/119411

Download Citation

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Article abstract page views

15

Downloads

Download data is not yet available.