Micropropagation and genetic characterization of abaca (Musa textilis Nee) varieties
Micropropagación y caracterización genética de variedades de abacá (Musa textilis Née)
DOI:
https://doi.org/10.15446/rfnam.v79.119411Keywords:
Biotechnology, Fiber crops, Microsatellites, Plant tissue culture, Genetic diversity (en)Biotecnología, planta textil, Microsatélites, Cultivo de tejidos, Diversidad genética (es)
Downloads
Abaca (Musa textilis Nee) is a perennial plant of the Musaceae family, highly valued for the fibers obtained from its pseudostem. Costa Rica, the third-largest global producer of this fiber, faces limitations in propagation and variety selection due to its reliance on vegetative material and the limited genetic information available. In this study, efficient protocols were developed for the in vitro establishment and large-scale micropropagation of commercial abaca varieties cultivated in Costa Rica, as well as their genetic characterization using Simple Sequence Repeat (SSR) markers. Effective disinfection of explants derived from corms was achieved, and multiplication rates of 5 to 10 shoots per explant were obtained within 3 to 4 weeks, with plantlets ready for acclimatization in 8 to 12 weeks. Molecular characterization revealed high genetic variability among the analyzed varieties, based on differences in the number and size of the amplicons obtained with SSR markers. The R40 marker showed high discrimination power. These results demonstrate the potential of SSR markers for differentiating abaca genotypes and support their use in genetic improvement and conservation programs. The developed protocols represent a key tool for producing pathogen-free plant material and for strengthening commercial propagation and germplasm conservation strategies for abaca in Costa Rica.
El abacá (Musa textilis Née) es una planta perenne de la familia Musaceae, de gran relevancia por las fibras obtenidas a partir de su pseudotallo. Costa Rica, tercer productor mundial de esta fibra, enfrenta limitaciones en la propagación y en la selección de variedades debido a la dependencia de material vegetativo y a la escasa información genética disponible. En este estudio se desarrollaron protocolos eficientes para el establecimiento in vitro y la micropropagación a gran escala de variedades comerciales de abacá cultivadas en Costa Rica, así como su caracterización genética mediante marcadores de Secuencias Simples Repetidas (SSR). Se logró una desinfección efectiva de explantes provenientes de cormos y una multiplicación de 5 a 10 brotes por explante en un periodo de 3 a 4 semanas, alcanzando la formación de plántulas listas para aclimatación en 8 a 12 semanas. La caracterización molecular evidenció una amplia variabilidad genética entre las variedades analizadas, mediante diferencias en el número y tamaño de los amplicones obtenidos para los marcadores SSR. El marcador R40 mostró un alto poder discriminativo. Estos resultados demuestran el potencial de los SSR para diferenciar genotipos de abacá y respaldan su uso en programas de conservación y mejora genética. Los protocolos desarrollados representan una herramienta clave para la producción de material vegetal libre de patógenos y para el fortalecimiento de estrategias de propagación comercial y conservación del germoplasma de abacá en Costa Rica.
References
Abdalla N, El-Ramady H, Seliem MK, El-Mahrouk ME et al (2022) An academic and technical overview on plant micropropagation challenges. Horticulturae, 8(8): 677. https://doi.org/10.3390/horticulturae8080677
Abdelnour-Esquivel A, Pérez J, Rojas M, Vargas W and Gatica-Arias A (2020) Use of gamma radiation to induce mutations in rice (Oryza sativa L.) and the selection of lines with tolerance to salinity and drought. In Vitro Cellular & Developmental Biology - Plant, 56: 88-97. https://doi.org/10.1007/s11627-019-10015-5
Adamek K, Grainger C, Phineas Jones AM and Torkamaneh D (2023) Genotyping-by-sequencing (GBS) reveals greater somatic mutations than simple sequence repeats (SSRs) in micropropagated cannabis plants. In Vitro Cellular & Developmental Biology – Plant, 59: 757-766. https://doi.org/10.1007/s11627-023-10377-x
Araya-Gutiérrez D, Garro Monge G, Jiménez-Quesada K, Arias-Aguilar D and Quesada Cordero R (2023) Abaca: A general review on its characteristics, productivity, and market in the world. Revista Facultad Nacional de Agronomía, 76(1): 10263-10273. https://doi.org/10.15446/rfnam.v76n1.101710
Araya-Salas M, Arias-Aguilar D, Valverde-Otárola JC, Arias-Ceciliano K et al (2022) Avances en las investigaciones realizadas en cultivos de abacá establecidos en Costa Rica con especial referencia a los sistemas agroforestales. Tecnología en Marcha, 35: 50-59. https://doi.org/10.18845/tm.v35i6.6235
Arias Aguilar D, Araya Salas M, Esquivel Segura E and Jiménez Montero M (2025) Manual técnico para la producción sostenible de abacá (Musa textilis NéeNee) en Costa Rica. Instituto Tecnológico de Costa Rica, Descubre and Promotora de Comercio Exterior de Costa Rica. https://www.descubre.cr/wp-content/uploads/2025/04/Manual-tecnico-para-la-produccion-de-abaca-Musa-textilis-Nee-en-Costa-Rica.pdf
Cardoso JC, Sheng Gerald LT and Teixeira da Silva JA (2018) Chapter 2 - Micropropagation in the twenty-first century. pp 17-46. In: Loyola-Vargas VM and Ochoa-Alejo N (eds.). Plant Cell Culture Protocols. Fourth edition. Humana, New York. 507 p. https://doi.org/10.1007/978-1-4939-8594-4_2
Chen S, Dong M, Zhang Y, Qi S, Liu X, Zhang J and Zhao J (2020) Development and characterization of Simple Sequence Repeat markers for, and genetic diversity analysis of Liquidambar formosana. Forests, 11(2): 203. https://doi.org/10.3390/f11020203
Del Río JC and Gutiérrez A (2006) Chemical composition of abaca (Musa textilis) leaf fibers used for manufacturing of high quality paper pulps. Journal of Agricultural and Food Chemistry, 54(13): 4600-4610. https://doi.org/10.1021/jf053016n
Dewangan N, Sahu K and Bhardwaj H (2020) Revolutionizing molecular biology: The evolution of PCR through troubleshooting and optimization. NewBioWorld, 2(1): 1-17. https://doi.org/10.52228/NBW-JAAB.2020-2-1-3
Gaikwad AB, Kumari R, Yadav S, Rangan P, Wankhede DP and Bhat KV (2023) Small cardamom genome: Development and utilization of microsatellite markers from a draft genome sequence of Elettaria cardamomum Maton. Frontiers in Plant Science, 14: 1161499. https://doi.org/10.3389/fpls.2023.1161499
Hastuti H, Purnomo P, Sumardi I and Daryono BS (2019) Diversity wild banana species (Musa spp.) in Sulawesi, Indonesia. BIODIVERSITAS, 20(3): 824-832. https://doi.org/10.13057/biodiv/d200328
Ishii K and Fukui M (2001) Optimization of annealing temperature to reduce bias caused by a primer mismatch in multitemplate PCR. Applied and Environmental Microbiology, 67(8): 3753-3755. https://doi.org/10.1128%2FAEM.67.8.3753-3755.2001
Jagadeesan B, Gerner-Smidt P, Allard MW, Leuillet S et al (2019) The use of next generation sequencing for improving food safety: Translation into practice. Food Microbiology, 79: 96-115. https://doi.org/10.1016/j.fm.2018.11.005
Kalimuthu K, Saravanakumar M and Senthilkumar R (2007) In vitro micropropagation of Musa sapientum L. (Cavendish Dwarf). African Journal of Biotechnology, 6(9): 1106-1109. ISSN: 1684-5315.
Karimah A, Ridho MR, Munawar SS, Ismadi, Amin Y (2021) A comprehensive review on natural fibers: Technological and socio-economical aspects. Polymers, 13(24): 4280. https://doi.org/10.3390/polym13244280
Khatun F, Hoque ME, Huq H, Adil M, Ashraf-Uz-Zaman K and Rabin MH (2017) Effect of BAP and IBA on in vitro regeneration of local banana variety of Sabri. Biotechnology Journal International, 18(1): 1-10. ISSN: 2231–2927.
Lalusin AG and Villavicencio MLH (2015) Chapter 12 - Abaca (Musa textilis Nee) breeding in the Philippines. pp 265-289. In Cruz VMV and Dierig DA (eds.). Industrial Crops: Breeding for Bioenergy and Bioproducts. First edition. Springer, New York. 444 p. https://doi.org/10.1007/978-1-4939-1447-0_12
Marimuthu Somasundaram S, Subbaraya U, Durairajan SG, Rajendran S et al (2019) Comparison of two different electrophoretic methods in studying the genetic diversity among plantains (Musa spp.) using ISSR markers. Electrophoresis, 40(9): 1265-1272. https://doi.org/10.1002/elps.201800456
Murashige T and Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum, 15(3): 473-497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
Ngomuo M, Mneney E and Ndakidemi P (2013) The effects of auxins and cytokinin on growth and development of (Musa sp.) var. “Yangambi” explants in tissue culture. American Journal of Plant Sciences, 4(11): 2174-2180. http://doi.org/10.4236/ajps.2013.411269
Orlikowska T, Nowak K and Reed B (2017) Bacteria in the plant tissue culture environment. Plant Cell, Tissue and Organ Culture (PCTOC), 128: 487-508. https://doi.org/10.1007/s11240-016-1144-9
Palomares Dueña J (2013) Agronomic performance and tensile strength analysis of abaca (Musa textilis NEE) hybrids resistant to abaca bunchy top virus (Undergraduate theses). University of the Philippines Los Baños. Los Baños. Phillipines. https://www.ukdr.uplb.edu.ph/etd-undergrad/1226
Patil PG, Singh NV, Bohra A, Raghavendra KP, Mane R et al (2021) Comprehensive characterization and validation of chromosome-specific highly polymorphic SSR markers from pomegranate (Punica granatum L.) cv. Tunisia genome. Frontiers in Plant Science, 12: 645055. https://doi.org/10.3389/fpls.2021.645055
Porta AR and Enners E (2012) Determining annealing temperatures for polymerase chain reaction. The American Biology Teacher, 74(4): 256-260. https://doi.org/10.1525/abt.2012.74.4.9
Priyanka K (2020) Impact of growth regulators on in vitro growth of banana (Musa spp) cultured: A review. International Journal on Agricultural Sciences, 11(1): 34-37. ISSN: 0976-450X.
Ray SS and Ali N (2017) Biotic contamination and possible ways of sterilization: A review with reference to bamboo micropropagation. Brazilian Archives of Biology and Technology, 59: e160485. https://doi.org/10.1590/1678-4324-2016160485
Shah SH, Khan N, Memon SQ, Latif M, Zia MA et al (2020) Effects of auxins and cytokinins on in vitro multiplication of banana (Musa sp.) variety ‘W-11’ in Pakistan. The Journal of Animal & Plant Sciences, 30(1): 98-106. ISSN: 1018-7081.
Sinha AK, Bhattacharya S and Narang HK (2021) Abaca fibre reinforced polymer composites: A review. Journal of Materials Science, 56: 4569-4587. https://doi.org/10.1007/s10853-020-05572-9
Sugiyono, Dewi PR and Prasetyo R (2021) Banana cultivars microshoot induction and plantlet formation using cytokinin and auxin. Caraka Tani: Journal of Sustainable Agriculture, 36(2): 249-258. http://doi.org/10.20961/carakatani.v36i2.50425
Uzaribara E, Nachegowda V, Ansar H, Sathyanarayana BN and Taj A (2015) In vitro propagation of red banana. The Bioscan, 10(1): 125-130. ISSN: 0973-7049.
Yllano O, Diaz M, Lalusin A, Laurena A and Tecson-Mendoza E (2020) Genetic analyses of abaca (Musa textilis Nee) germplasm from its primary center of origin, the Philippines, using simple sequence repeat (SSR) markers. The Philippine Agricultural Scientist, 103(4): 311-321. ISSN: 0031-7454.
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License
Copyright (c) 2026 Revista Facultad Nacional de Agronomía Medellín

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The journal allows the author(s) to maintain the exploitation rights (copyright) of their articles without restrictions. The author(s) accept the distribution of their articles on the web and in paper support (25 copies per issue) under open access at local, regional, and international levels. The full paper will be included and disseminated through the Portal of Journals and Institutional Repository of the Universidad Nacional de Colombia, and in all the specialized databases that the journal considers pertinent for its indexation, to provide visibility and positioning to the article. All articles must comply with Colombian and international legislation, related to copyright.
Author Commitments
The author(s) undertake to assign the rights of printing and reprinting of the material published to the journal Revista Facultad Nacional de Agronomía Medellín. Any quotation of the articles published in the journal should be made given the respective credits to the journal and its content. In case content duplication of the journal or its partial or total publication in another language, there must be written permission of the Director.
Content Responsibility
The Faculty of Agricultural Sciences and the journal are not necessarily responsible or in solidarity with the concepts issued in the published articles, whose responsibility will be entirely the author or the authors.






