Published

2026-01-15

Soil thermal, physical, and chemical responses to low-rank coal amendment in saline-sodic conditions: biomass outcomes

Dinámica térmica, física y química de suelo salino-sódico tratado con carbón de bajo rango: implicaciones en biomasa vegetal

DOI:

https://doi.org/10.15446/rfnam.v79.119944

Keywords:

Soil salinization, Sodicity, Organic amendments, Soil thermal properties, Aggregate stability, Lignite (en)
Salinización del suelo, Sodicidad, Enmiendas orgánicas, Propiedades térmicas del suelo, Estabilidad de agregados, Lignito (es)

Downloads

Authors

Soil salinization is a major constraint to agricultural productivity in the Caribbean region of Colombia. Low-rank coals (LRC), characterized by their high humic acid content, have been proposed as amendments capable of improving the physical and chemical conditions of degraded soils; however, their influence on soil thermal conductivity, a key property governing heat flow, soil microclimate, and plant performance, remains poorly understood. This study assessed the thermal, physical, and chemical responses of saline-sodic soils in Cesar following LRC application. A field experiment was conducted using three LRC application rates: 0, 2, and 4 t ha⁻¹. Measurements included thermal conductivity, soil physical and chemical properties, and plant biomass. Based on the results, LRC significantly decreased soil thermal conductivity by 36%, from 1.25 to 0.60 W m-1 K-1 (P<0.05), while increasing organic matter, aggregate stability, and porosity. Significant reductions (P<0.05) were also observed in pH, electrical conductivity, sodium adsorption ratio (SAR), exchangeable sodium percentage (ESP), and cation exchange capacity (CEC). Plant biomass increased by 200%, from 1 g to 9 g (P<0.05), indicating a strong positive response under saline-sodic conditions. Correlation analyses indicated a negative association between aggregate content and thermal conductivity and a positive association between bulk density and thermal conductivity. Overall, the results suggest that LRC improves soil physical and chemical conditions while modifying thermal behavior to enhance plant growth. This study provides evidence that LRC is an effective amendment capable of improving soil functionality and strengthening agricultural resilience in vulnerable regions.

La salinización del suelo limita significativamente la productividad agrícola en la región Caribe de Colombia. Los carbones de bajo rango (CBR), ricos en ácidos húmicos, se han propuesto como enmiendas capaces de mejorar las condiciones físicas y químicas de suelos degradados; sin embargo, su efecto sobre la conductividad térmica, propiedad clave para el flujo de calor, el microclima del suelo y el desarrollo vegetal, aún es poco conocido. Este estudio evaluó las respuestas térmicas, físicas y químicas de suelos salino-sódicos del Cesar tras la aplicación de CBR. Se desarrolló un experimento de campo con tres dosis: 0, 2 y 4 t ha-1. Se midieron conductividad térmica, propiedades físicas y químicas del suelo y biomasa vegetal. El CBR redujo la conductividad térmica en un 36%, de 1,25 a 0,60 W m-1 K-1 (P<0,05), y aumentó la materia orgánica, la estabilidad de agregados y la porosidad. También disminuyeron significativamente pH, conductividad eléctrica, relación de adsorción de sodio (SAR), porcentaje de sodio intercambiable (ESP) y capacidad de intercambio catiónico (CEC) (P<0,05). La biomasa vegetal aumentó un 200%, de 1 g a 9 g (P<0,05), evidenciando una respuesta positiva bajo condiciones salino-sódicas. Los análisis de correlación indicaron una relación negativa entre agregados y conductividad térmica, y positiva entre densidad aparente y conductividad térmica. En conjunto, los resultados sugieren que el CBR mejora las condiciones del suelo y su comportamiento térmico, favoreciendo el crecimiento vegetal y fortaleciendo la resiliencia agrícola en regiones vulnerables.

References

Akimbekov N, Qiao X, Digel I, Abdieva G et al (2020) The Effect of Leonardite-Derived Amendments on Soil Microbiome Structure and Potato Yield. Agriculture, 10(5), 147. https://doi.org/10.3390/agriculture10050147

Amoah-Antwi C, Kwiatkowska-Malina J, Fenton O, Szara E et al (2021) Holistic Assessment of Biochar and Brown Coal Waste as Organic Amendments in Sustainable Environmental and Agricultural Applications. Water Air & Soil Pollution, 232(3). https://doi.org/10.1007/s11270-021-05044-z

Anemana T, Óvári M, Szegedi A et al (2019) Optimization of Lignite Particle Size for Stabilization of Trivalent Chromium in Soils. Soil and Sediment Contamination: An International Journal 29 (3): 272–91. https://doi.org/10.1080/15320383.2019.1703100

Canellas LP, Olivares FL, Aguiar NO et al (2015) Humic and fulvic acids as biostimulants in horticulture. Scientia Horticulturae. 196:15-27. https://doi.org/10.1016/j.scienta.2015.09.013

Chaganti VN and Crohn DM (2015) Evaluating the relative contribution of physiochemical and biological factors in ameliorating a saline–sodic soil amended with composts and biochar and leached with reclaimed water. Geoderma, 259, 45-55.

Chen Z, Li Y, Hu M, Xiong Y et al (2023) Lignite bioorganic fertilizer enhanced microbial co-occurrence network stability and plant–microbe interactions in saline-sodic soil. Science of The Total Environment, 879, 163113.

Cubillos Hinojosa J, Valero Valero N and Peralta A (2017) Effect of a low rank coal inoculated with coal solubilizing bacteria for the rehabilitation of a saline-sodic soil in field conditions. Revista Facultad Nacional de Agronomía Medellín. https://doi.org/10.15446/rfna.v70n3.62478

Guo L, Nie Z, Zhou J, Zhang S, An F et al (2022) Effects of Different Organic Amendments on Soil Improvement, Bacterial Composition, and Functional Diversity in Saline–Sodic Soil. Agronomy, 12(10), 2294. https://doi.org/10.3390/agronomy12102294

IDEAM - Instituto de Hidrología, Meteorología y Estudios Ambientales de Colombia (2019) Mapa nacional de degradación de suelos por salinización.

IGAC - Instituto Geográfico Agustín Codazzi (2006) Métodos analíticos del laboratorio de suelos.

Kaya C, Akram NA, Ashraf M and Sonmez O (2018) Exogenous application of humic acid mitigates salinity stress in maize (Zea mays L.) plants by improving some key physico-biochemical attributes. Cereal Research Communications, 46, 67-78.

Khaled H and Fawy HA (2011) Effect of different levels of humic acids on the nutrient content, plant growth, and soil properties under conditions of salinity. Soil and Water Research, 6(1), 21.

Khaledi S, Delbari M, Galavi H, Bagheri H and Chari MM (2023) Effects of biochar particle size, biochar application rate, and moisture content on thermal properties of an unsaturated sandy loam soil. Soil And Tillage Research, 226, 105579. https://doi.org/10.1016/j.still.2022.105579

Khan RU, Khan MZ, Akhtar ME, Ahmad S and Khan A (2014) Chemical Composition of Lignitic Humic Acid and Evaluating its Positive impacts on Nutrient Uptake, Growth and Yield of Maize. Pakistan Journal of Chemistry, 4(1), 19-25. https://doi.org/10.15228/2014.v04.i01.p04

Lamar RT, Gralian J, Hockaday WC, Jerzykiewicz M and Monda H (2024) Investigation into the role of carboxylic acid and phenolic hydroxyl groups in the plant biostimulant activity of a humic acid purified from an oxidized sub-bituminous coal. Frontiers In Plant Science, 1: 1328006. https://doi.org/10.3389/fpls.2024.1328006

Li YQ, Li LJ, Zhao BW et al (2023) Effects of Corn Straw Biochar, Soil Bulk Density and Soil Water Content on Thermal Properties of a Light Sierozem Soil. Nature Environment and Pollution Technology, 22(2), 895-903. https://doi.org/10.46488/nept.2023.v22i02.032

Lohar S, Kumari P, Sharma A et al (2024) Biochar Enhancing Soil Resilience: A Dual Strategy for Mitigating Heavy Metal Contamination and Drought Stress. (2024). Letters In Applied NanoBioScience, 13(2), 70. https://doi.org/10.33263/LIANBS132.070

Manasa MR, Katukuri NR, Nair SSD et al (2020) Role of biochar and organic substrates in enhancing the functional characteristics and microbial community in a saline soil. Journal of environmental management, 269, 110737. https://doi.org/10.1016/j.jenvman.2020.110737

Ortiz O and Ramírez R (2022) Impacto de la adición de carbón de bajo rango en la conductividad térmica del suelo salino sódico. Información tecnológica, 33(4), 53-62.

Pantoja-Guerra M, Ramirez-Pisco R and Valero-Valero N (2019) Improvement of mining soil properties through the use of a new bio-conditioner prototype: a greenhouse trial, Journals of Soils and Sediments, 19, 1850–1865. https://doi.org/10.1007/s11368-018-2206-x

Paramashivam D, Clough TJ, Carlton A et al (2016) The effect of lignite on nitrogen mobility in a low-fertility soil amended with biosolids and urea. Science of the Total Environment, 543, 601-608.

Piccolo A and Drosos M (2025) The essential role of humified organic matter in preserving soil health. Chemical And Biological Technologies in Agriculture 12(1), 1-22. https://doi.org/10.1186/s40538-025-00730-0

Qi Y, Szendrak D, Yuen RTW, Hoadley AF and Mudd G (2011) Application of sludge dewatered products to soil and its effects on the leaching behaviour of heavy metals. Chemical Engineering Journal, 166(2), 586-595.

Qin S, Rong F, Zhang M et al (2023) Biochar Can Partially Substitute Fertilizer for Rice Production in Acid Paddy Field in Southern China. Agronomy, 13(5), 1304. https://doi.org/10.3390/agronomy13051304

R Core Team (2023) R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.r-project.org/

Sarlaki E, Kianmehr MH, Ghorbani M et al (2023) Highly humified nitrogen-functionalized lignite activated by urea pretreatment and ozone plasma oxidation. Chemical Engineering Journal, 456, 140978. https://doi.org/10.1016/j.cej.2022.140978

Skodras G, Kokorotsikos P and Serafidou M (2014) Cation exchange capability and reactivity of low-rank coal and chars. Open Chemistry, 12(1), 33-43. https://doi.org/10.2478/s11532-013-0346-9

Solek-Podwika K, Ciarkowska K and Filipek-Mazur B (2023) Soil Amendment with a Lignite-Derived Humic Substance Affects Soil Properties and Biomass Maize Yield. Sustainability, 15(3), 2304. https://doi.org/10.3390/su15032304

Usowicz B, Lipiec J, Łukowski M et al (2020) Impact of biochar addition on soil thermal properties: Modelling approach. Geoderma, 376, 114574. https://doi.org/10.1016/j.geoderma.2020.114574

Yeboah S, Jun W, Amankwaa-Yeboah P and Zang R (2023) Impact of different sources of organic amendments with varying in fertilizer rates on soil temperature, soil moisture and spring wheat yield in semiarid environment. Journal of Ghana Science Association Vol 21(1).

Zandonadi DB, Monda H, Gralian J, James A et al (2025) Humic acids as drivers of plant growth: regulating root development and photobiology through redox modulation. Chemical And Biological Technologies in Agriculture 12(1). https://doi.org/10.1186/s40538-025-00789-9

Zhang Q, Wang Y, Wu Y et al (2013) Effects of biochar amendment on soil thermal conductivity, reflectance, and temperature. Soil Science Society of America Journal 77(5):1478-1487. https://doi.org/10.2136/sssaj2012.0180

Zhao Y and Naeth MA (2022) Application timing optimization of lignite‐derived humic substances for three agricultural plant species and soil fertility. Journal of environmental quality. Vol. 51, No. 5, pp. 1035-1043. https://doi.org/10.1002/jeq2.20393

How to Cite

APA

Ortiz Benavides, O. & Ramirez Pisco, R. (2026). Soil thermal, physical, and chemical responses to low-rank coal amendment in saline-sodic conditions: biomass outcomes. Revista Facultad Nacional de Agronomía Medellín, 79, e119944. https://doi.org/10.15446/rfnam.v79.119944

ACM

[1]
Ortiz Benavides, O. and Ramirez Pisco, R. 2026. Soil thermal, physical, and chemical responses to low-rank coal amendment in saline-sodic conditions: biomass outcomes. Revista Facultad Nacional de Agronomía Medellín. 79, (Jan. 2026), e119944. DOI:https://doi.org/10.15446/rfnam.v79.119944.

ACS

(1)
Ortiz Benavides, O.; Ramirez Pisco, R. Soil thermal, physical, and chemical responses to low-rank coal amendment in saline-sodic conditions: biomass outcomes. Rev. Fac. Nac. Agron. Medellín 2026, 79, e119944.

ABNT

ORTIZ BENAVIDES, O.; RAMIREZ PISCO, R. Soil thermal, physical, and chemical responses to low-rank coal amendment in saline-sodic conditions: biomass outcomes. Revista Facultad Nacional de Agronomía Medellín, [S. l.], v. 79, p. e119944, 2026. DOI: 10.15446/rfnam.v79.119944. Disponível em: https://revistas.unal.edu.co/index.php/refame/article/view/119944. Acesso em: 16 jan. 2026.

Chicago

Ortiz Benavides, Orieta, and Ramiro Ramirez Pisco. 2026. “Soil thermal, physical, and chemical responses to low-rank coal amendment in saline-sodic conditions: biomass outcomes”. Revista Facultad Nacional De Agronomía Medellín 79 (January):e119944. https://doi.org/10.15446/rfnam.v79.119944.

Harvard

Ortiz Benavides, O. and Ramirez Pisco, R. (2026) “Soil thermal, physical, and chemical responses to low-rank coal amendment in saline-sodic conditions: biomass outcomes”, Revista Facultad Nacional de Agronomía Medellín, 79, p. e119944. doi: 10.15446/rfnam.v79.119944.

IEEE

[1]
O. Ortiz Benavides and R. Ramirez Pisco, “Soil thermal, physical, and chemical responses to low-rank coal amendment in saline-sodic conditions: biomass outcomes”, Rev. Fac. Nac. Agron. Medellín, vol. 79, p. e119944, Jan. 2026.

MLA

Ortiz Benavides, O., and R. Ramirez Pisco. “Soil thermal, physical, and chemical responses to low-rank coal amendment in saline-sodic conditions: biomass outcomes”. Revista Facultad Nacional de Agronomía Medellín, vol. 79, Jan. 2026, p. e119944, doi:10.15446/rfnam.v79.119944.

Turabian

Ortiz Benavides, Orieta, and Ramiro Ramirez Pisco. “Soil thermal, physical, and chemical responses to low-rank coal amendment in saline-sodic conditions: biomass outcomes”. Revista Facultad Nacional de Agronomía Medellín 79 (January 15, 2026): e119944. Accessed January 16, 2026. https://revistas.unal.edu.co/index.php/refame/article/view/119944.

Vancouver

1.
Ortiz Benavides O, Ramirez Pisco R. Soil thermal, physical, and chemical responses to low-rank coal amendment in saline-sodic conditions: biomass outcomes. Rev. Fac. Nac. Agron. Medellín [Internet]. 2026 Jan. 15 [cited 2026 Jan. 16];79:e119944. Available from: https://revistas.unal.edu.co/index.php/refame/article/view/119944

Download Citation

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Article abstract page views

13

Downloads

Download data is not yet available.