Biodegradation of commercial cypermethrin by microorganisms isolated from agricultural soils exposed to pyrethroid pesticides
Biodegradación de cipermetrina comercial por microorganismos aislados de suelos agrícolas expuestos a pesticidas piretroides
DOI:
https://doi.org/10.15446/rfnam.v79.120411Keywords:
Degradation kinetics, Bioremediation , Bacteria, Fungi, Pyrethroid (en)Cinética de degradación, Bioremediación, Bacteria, Hongos, Piretroide (es)
Downloads
The increasing use of pesticides in agricultural systems is a major contributor to water body pollution. Cypermethrin, a highly toxic insecticide for aquatic organisms, is one of the most commonly sprayed pesticides in small agricultural towns in Bolivian valleys. Therefore, eco-friendly strategies are required to degrade this pesticide. Microorganisms capable of degrading cypermethrin could be used for the remediation of soil and water systems. In this work, fungal and bacterial strains from agricultural soils (Tahuapalca, Bolivia) with the ability to grow with cypermethrin as their sole carbon source were isolated. Their ability to degrade pesticides under static and agitated conditions was studied. Three microbial isolates successfully degraded 74.5% of cypermethrin (1.5 g L-1) in 41 days under static conditions. Agitation during incubation significantly enhanced degradation activity by fungal isolates, achieving 95% degradation of cypermethrin within 10 days. The presence of sucrose as an extra carbon source did not improve cypermethrin degradation under agitated conditions.
El uso creciente de pesticidas en los sistemas agrícolas es una de las principales fuentes de contaminación de los cuerpos de agua. La cipermetrina, un insecticida altamente tóxico para los organismos acuáticos, es uno de los pesticidas más comúnmente aplicados en pequeñas localidades agrícolas de los valles bolivianos. Por lo tanto, se necesita una solución ecológica para degradar este pesticida. Los microorganismos capaces de degradar este compuesto podrían ser una alternativa para biorremediar sistemas de agua y suelos. En este trabajo, se aislaron cepas fúngicas y bacterianas de suelos agrícolas (Tahuapalca, Bolivia) con la capacidad de crecer con este pesticida como su única fuente de carbono. Se determinó su capacidad para degradar el pesticida en condiciones estáticas y con agitación. Tres de los aislados microbianos degradaron con éxito el 74.5% de la cipermetrina (1,5 g L-1) en 41 días en condiciones estáticas. La agitación durante la incubación mejoró significativamente la actividad fúngica de degradación, logrando una degradación de hasta el 95% de la cipermetrina en 10 días. Por otro lado, se observó que la presencia de sacarosa como fuente adicional de carbono no mejoró significativamente la degradación de este pesticida en condiciones de agitación.
References
Barrón Cuenca J, Tirado N, Vikström M, Lindh CH, Stenius U et al (2020) Pesticide exposure among Bolivian farmers: associations between worker protection and exposure biomarkers. Journal of Exposure Science & Environmental Epidemiology 30(4): 730-742. https://doi.org/10.1038/s41370-019-0128-3
Bhatt P, Huang Y, Zhang W, Sharma A and Chen S (2020) Enhanced Cypermethrin Degradation Kinetics and Metabolic Pathway in Bacillus thuringiensis Strain SG4. Microorganisms 8(2): 223. https://www.mdpi.com/2076-2607/8/2/223
Chen S, Lai K, Li Y, Hu M, Zhang Y and Zeng Y (2011) Biodegradation of deltamethrin and its hydrolysis product 3-phenoxybenzaldehyde by a newly isolated Streptomyces aureus strain HP-S-01. Applied Microbiology and Biotechnology 90(4): 1471-1483. https://doi.org/10.1007/s00253-011-3136-3
Chen S, Luo J, Hu M, Lai K, Geng P and Huang H (2012) Enhancement of cypermethrin degradation by a coculture of Bacillus cereus ZH-3 and Streptomyces aureus HP-S-01. Bioresource Technology 110: 97-104. http://www.sciencedirect.com/science/article/pii/S0960852412001307
Collins P and Cappello S (2006) Cypermethrin toxicity to aquatic life: bioassays for the freshwater prawn Palaemonetes argentinus. Archives of environmental contamination and toxicology 51(1): 79-85. http://link.springer.com/article/10.1007/s00244-005-0072-1
Copa Bobarin R (2011) Caracterizacion y analisis multitemporal de los cambios producidos en la estructura socioeconomica y productiva de la comunidad de Tahuapalca (Publication Number 1499) Universidad Mayor de San Andrés. La Paz, Bolivia.
Cycoń M and Piotrowska-Seget Z (2016) Pyrethroid-Degrading Microorganisms and Their Potential for the Bioremediation of Contaminated Soils: A Review [Review]. Frontiers in Microbiology 7. https://doi.org/10.3389/fmicb.2016.01463
Domagalski JL, Weston DP, Zhang M and Hladik M (2010) Pyrethroid insecticide concentrations and toxicity in streambed sediments and loads in surface waters of the San Joaquin Valley, California, USA. Environmental Toxicology and Chemistry 29(4): 813-823. http://onlinelibrary.wiley.com/doi/10.1002/etc.106/full
Farag MR, Alagawany M, Bilal RM, Gewida AGA et al (2021) An Overview on the Potential Hazards of Pyrethroid Insecticides in Fish, with Special Emphasis on Cypermethrin Toxicity. Animals 11(7): 1880. https://www.mdpi.com/2076-2615/11/7/1880
Gangola S, Joshi S, Bhandari G, Pant G et al (2023) Exploring microbial diversity responses in agricultural fields: a comparative analysis under pesticide stress and non-stress conditions [Original Research]. Frontiers in Microbiology Volume 14 - 2023. https://doi.org/10.3389/fmicb.2023.1271129
Grant RJ, Daniell TJ and Betts WB (2002) Isolation and identification of synthetic pyrethroid-degrading bacteria. Journal of Applied Microbiology 92(3): 534-540. http://onlinelibrary.wiley.com/doi/10.1046/j.1365-2672.2002.01558.x/full
Huang Y, Xiao L, Li F, Xiao M et al (2018) Microbial Degradation of Pesticide Residues and an Emphasis on the Degradation of Cypermethrin and 3-phenoxy Benzoic Acid: A Review. Molecules 23(9): 2313. https://www.mdpi.com/1420-3049/23/9/2313
Hussain S, Arshad M, Saleem M and Zahir ZA (2006) Screening of soil fungi for in vitro degradation of endosulfan. 23(7): 939-945. https://doi.org/10.1007/s11274-006-9317-z
Kansal I, Kapoor A, Solanki S and Singh R (2023) Cypermethrin toxicity in the environment: analytical insight into detection methods and microbial degradation pathways. Journal of Applied Microbiology 134(6). https://doi.org/10.1093/jambio/lxad105
Lawan M, Yakasai HM, Babandi A, Ibrahim S et al (2021) Characterization of Cypermethrin-degradation by a Novel Molybdenum-reducing Morganella sp. Isolated from Active Agricultural Land in Northwestern Nigeria. Bioremediation Science and Technology Research (e-ISSN 2289-5892) 9(2): 25-30.
Li G, Wang K and Liu YH (2008) Molecular cloning and characterization of a novel pyrethroid-hydrolyzing esterase originating from the Metagenome. Microb Cell Fact 7(1): 38. http://www.biomedcentral.com/content/pdf/1475-2859-7-38.pdf
Liang WQ, Wang ZY, Li H, Wu PC et al (2005) Purification and Characterization of a Novel Pyrethroid Hydrolase from Aspergillus niger ZD11. 53(19): 7415-7420. https://doi.org/10.1021/jf051460k
Mahendra BG, Goud BS and Srinidhi GM (2010) Influence of moisture content and oxygen concentration on biodegradation of petroleum hydrocarbons. 4(4).
Malla MA, Dubey A, Kumar A, Vennapu DR et al (2022) Process optimization of cypermethrin biodegradation by regression analysis and parametric modeling along with biochemical degradation pathway. Environmental Science and Pollution Research 29(51): 77418-77427.
Maloney SE, Maule A and Smith AR (1993) Purification and preliminary characterization of permethrinase from a pyrethroid-transforming strain of Bacillus cereus. Applied and Environmental Microbiology 59(7): 2007-2013. https://doi.org/10.1128/aem.59.7.2007-2013.1993
Mugni H, Demetrio P, Bulus G, Ronco A and Bonetto C (2011) Effect of aquatic vegetation on the persistence of cypermethrin toxicity in water. Bulletin of environmental contamination and toxicology 86(1): 23-27. https://doi.org/10.1007/s00128-010-0143-5
Narayanan M, Kumarasamy S, Ranganathan M, Kandasamy S et al (2020) Enzyme and metabolites attained in degradation of chemical pesticides ß Cypermethrin by Bacillus cereus. Materials Today: Proceedings 33: 3640-3645. https://doi.org/10.1016/j.matpr.2020.05.722
Oliveros-Bastidas AdJ, Carrera CA and Marín D (2009) Estudio por espectrofotometría UV-Vis de la reacción entre los iones cianuro y picrato. Un ejemplo práctico de aplicaciones analíticas y estudios cinéticos. Revista Colombiana de Química 38(1): 61-82. http://www.redalyc.org/articulo.oa?id=309026680004
R Core Team (2023) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org/
R Foster LJ, Kwan BH and Vancov T (2004) Microbial degradation of the organophosphate pesticide, Ethion. FEMS Microbiology Letters 240(1): 49-53.
Rafique N and Tariq SR (2015) Photodegradation of α-cypermethrin in soil in the presence of trace metals (Cu 2+, Cd 2+, Fe 2+ and Zn 2+). Environmental Science: Processes & Impacts 17(1): 166-176.
Singh BK, Kuhad RC, Singh A, Lal R and Tripathi KK (1999) Biochemical and Molecular Basis of Pesticide Degradation by Microorganisms. Critical Reviews in Biotechnology 19(3): 197-225. https://doi.org/10.1080/0738-859991229242
Sundaram S, Das MT and Thakur IS (2013) Biodegradation of cypermethrin by Bacillus sp. in soil microcosm and in-vitro toxicity evaluation on human cell line. International Biodeterioration & Biodegradation 77: 39-44. https://doi.org/10.1016/j.ibiod.2012.11.008
Tallur PN, Megadi VB and Ninnekar HZ (2008) Biodegradation of Cypermethrin by Micrococcus sp. strain CPN 1. Biodegradation 19: 77-82. https://doi.org/10.1007/s10532-007-9116-8
Tirado N (2018) Pesticide use among Bolivian small-holder farmers – impacts on health, ecosystems and peasant economies. Rostock]. Germany.
Velisek J, Wlasow T, Gomulka P, Svobodova Z et al (2006) Effects of cypermethrin on rainbow trout (Oncorhynchus mykiss). VETERINARNI MEDICINA-PRAHA- 51(10): 469. http://www.agriculturejournals.cz/publicFiles/61206.pdf
Wadepohl H (1992) Benzene and Its Derivatives as Bridging Ligands in Transition-Metal Complexes. 31(3): 247-262. https://doi.org/10.1002/anie.199202473
Wang L, Wen Y, Guo X, Wang G, Li S and Jiang J (2010) Degradation of methamidophos by Hyphomicrobium species MAP-1 and the biochemical degradation pathway. Biodegradation 21(4): 513-523.
Wickham H (2009) ggplot2: Elegant Graphics for Data Analysis Springer-Verlag. New York.
Wu PC, Liu YH, Wang ZY, Zhang XY et al (2006) Molecular Cloning, Purification, and Biochemical Characterization of a Novel Pyrethroid-Hydrolyzing Esterase from Klebsiella sp. Strain ZD112. Journal of Agricultural and Food Chemistry 54(3): 836-842. http://doi.org/10.1021/jf052691u
Zhai Y, Li K, Song J, Shi Y and Yan Y (2012) Molecular cloning, purification and biochemical characterization of a novel pyrethroid-hydrolyzing carboxylesterase gene from Ochrobactrum anthropi YZ-1. Journal of hazardous materials 221: 206-212. https://doi.org/10.1016/j.jhazmat.2012.04.031
Zhan H, Huang Y, Lin Z, Bhatt P and Chen S (2020) New insights into the microbial degradation and catalytic mechanism of synthetic pyrethroids. Environmental Research 182: 109138.
Zhang M, Chen Y, Lai J, Wang X et al (2023) Cypermethrin adsorption by Lactiplantibacillus plantarum and its behavior in a simulated fecal fermentation model. Applied Microbiology and Biotechnology 107(22): 6985-6998. https://doi.org/10.1007/s00253-023-12764-1
Zhang M, Dai X, Lu Y, Wan Y et al (2025) Biosorption of cypermethrin from aqueous solutions by Pediococcus acidilactici: kinetics, isotherms, and mechanisms. Journal of the Science of Food and Agriculture 105(5): 2755-2764. https://doi.org/10.1002/jsfa.14016
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License
Copyright (c) 2026 Revista Facultad Nacional de Agronomía Medellín

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The journal allows the author(s) to maintain the exploitation rights (copyright) of their articles without restrictions. The author(s) accept the distribution of their articles on the web and in paper support (25 copies per issue) under open access at local, regional, and international levels. The full paper will be included and disseminated through the Portal of Journals and Institutional Repository of the Universidad Nacional de Colombia, and in all the specialized databases that the journal considers pertinent for its indexation, to provide visibility and positioning to the article. All articles must comply with Colombian and international legislation, related to copyright.
Author Commitments
The author(s) undertake to assign the rights of printing and reprinting of the material published to the journal Revista Facultad Nacional de Agronomía Medellín. Any quotation of the articles published in the journal should be made given the respective credits to the journal and its content. In case content duplication of the journal or its partial or total publication in another language, there must be written permission of the Director.
Content Responsibility
The Faculty of Agricultural Sciences and the journal are not necessarily responsible or in solidarity with the concepts issued in the published articles, whose responsibility will be entirely the author or the authors.






