Published

2026-01-15

Technology trends in extraction of bioactive compounds creole avocado and their application in lipid matrices

Tendencias tecnológicas para la extracción de compuestos bioactivos del aguacate criollo y su aplicación en matrices lipídicas

DOI:

https://doi.org/10.15446/rfnam.v79.120650

Keywords:

Antioxidants, Extraction methods, Food waste, Oleogel, Persea americana, Scientific surveillance (en)
Antioxidantes, Método de extracción, Residuos alimentarios, Oleogel, Persea americana, Vigilancia científica (es)

Downloads

Authors

This study aimed to identify the trends in extraction methods of bioactive compounds with antioxidant capacity from avocado co-products and their application in lipid matrices. For this purpose, the scientific production by country over the last five years was analyzed, revealing that China, India, and Spain are leading contributors to this research topic. In Colombia, studies related to avocado have primarily focused on technologies such as ultrasound and pressurized liquids with NADES solvents. Likewise, the most cited journals and areas of knowledge correspond to agricultural and biological sciences, which have made significant progress through the use of microorganisms as biological pretreatment due to their large-scale potential across different industries. Finally, the thematic map made it possible to identify that one of the most favorable alternatives to improve the yields and quality of the extractives is the combined use of assisted technologies such as electric fields, ultrasound, and enzymes enabling the improvement of oxidative stability and nutritional value of certain food matrices such as meat or bakery products through the incorporation of oleogels as fat substitutes.

El objetivo de este estudio fue identificar las tendencias alrededor de los métodos de extracción de compuestos bioactivos con capacidad antioxidante para el aprovechamiento de coproductos del aguacate y su aplicación en matrices lipídicas. Para ello, se hizo un análisis en los últimos cinco años de la producción científica por países, encontrando que China, India y España son líderes en estas investigaciones y que en Colombia los estudios relacionados al aguacate se han enfocado en tecnologías como ultrasonido y líquidos presurizados con solventes NADES. Asimismo, las revistas más sobresalientes y las áreas del conocimiento son las ciencias agrarias y las biológicas, que han representado un avance importante con el uso de microorganismos como pretratamiento biológico, por su potencial a gran escala en diferentes industrias. Finalmente, con el mapa temático se logró identificar que una de las alternativas más favorables para mejorar los rendimientos y la calidad de los extractivos es el uso combinado de tecnologías asistidas como campos eléctricos, ultrasonido y enzimas, brindando la capacidad de mejorar la estabilidad oxidativa y el valor nutricional de algunas matrices alimentarias como productos cárnicos o de panificación con la incorporación de oleogeles como sustitutos de grasa.

References

Acevedo-Viloria N, Cervera-Ricardo M, Figueroa-Flórez J et al (2024) Vigilancia científica y tecnológica en procesos de modificación físico-enzimática en gránulos de almidón. Revista UDCA Actualidad & Divulgación Científica 27. https://doi.org/10.31910/RUDCA.V27.N1.2024.2416

Acquavia MA, Benítez JJ, Bianco G et al (2023) Incorporation of bioactive compounds from avocado by-products to ethyl cellulose-reinforced paper for food packaging applications. Food Chem 429:136906. https://doi.org/10.1016/J.FOODCHEM.2023.136906

Andrade JM, Ramírez Plazas E and Quintero A (2017) Vigilancia tecnológica del sector agroindustrial. Entornos 30:23–35. https://doi.org/10.25054/01247905.1404

Araújo RG, Rodriguez-Jasso RM, Ruiz HA et al (2020) Process optimization of microwave-assisted extraction of bioactive molecules from avocado seeds. Ind Crops Prod 154:112623. https://doi.org/10.1016/j.indcrop.2020.112623

Araújo RG, Rodriguez-Jasso RM, Ruiza HA et al (2018) Avocado by-products: Nutritional and functional properties. Trends Food Science & Technology 80:51–60. https://doi.org/10.1016/j.tifs.2018.07.027

Athanasiadis V, Chatzimitakos T, Kotsou K et al (2022) Optimization of the Extraction Parameters for the Isolation of Bioactive Compounds from Orange Peel Waste. Sustainability 14:13926. https://doi.org/10.3390/su142113926

Barbosa P de PM, Ruviaro AR and Macedo GA (2021) Conditions of enzyme-assisted extraction to increase the recovery of flavanone aglycones from pectin waste. Journal of Food Science and Technology 58:4303–4312. https://doi.org/10.1007/s13197-020-04906-4

Barrera López RS and Arrubla Vélez JP (2017) Análisis de fitoesteroles en la semilla de Persea americana Miller (Var. Lorena) por cromatografía de gases y cromatografía líquida de alta eficiencia. Revista Facultad de Ciencias Básicas 13:35–41. https://doi.org/10.18359/rfcb.2013

Casas Godoy L and Sandoval Fabián GC (2014) Enzimas en la valorización de residuos agroindustriales. Revista Digital Universitaria 15.

Chatzimitakos T, Athanasiadis V, Kalompatsios D et al (2023) Sustainable Valorization of Sour Cherry (Prunus cerasus) By-Products: Extraction of Antioxidant Compounds. Sustainability 16:32. https://doi.org/10.3390/su16010032

Che-Galicia G, Váquiro-Herrera HA, Sampieri Á and Corona-Jiménez E (2020) Ultrasound-assisted extraction of phenolic compounds from avocado leaves (Persea americana Mill. var. Drymifolia): Optimization and modeling. International Journal of Chemical Reactor Engineering 18. https://doi.org/10.1515/IJCRE-2020-0023

Chen BJ, Liu Y, Yang K et al (2023) Amylase-assisted extraction alters nutritional and physicochemical properties of polysaccharides and saponins isolated from Ganoderma spp. Food Chem X 20:100913. https://doi.org/10.1016/J.FOCHX.2023.100913

Chen H, Bai Z, Tao S et al (2024) Optimization of enzyme-assisted microwave extraction, structural characterization, antioxidant activity and in vitro protective effect against H2O2-induced damage in HepG2 cells of polysaccharides from roots of Rubus crataegifolius Bunge. International Journal Biological Macromolecules 276:133969. https://doi.org/10.1016/J.IJBIOMAC.2024.133969

da Silva SL, Amaral JT, Ribeiro M et al (2019) Fat replacement by oleogel rich in oleic acid and its impact on the technological, nutritional, oxidative, and sensory properties of Bologna-type sausages. Meat Sci 149:141–148. https://doi.org/10.1016/J.MEATSCI.2018.11.020

David D, Alzate AF, Rojano B et al (2022) Extraction and characterization of phenolic compounds with antioxidant and antimicrobial activity from avocado seed (Persea americana mill). Bionatura 7:. https://doi.org/10.21931/RB/2022.07.04.51

Del-Castillo-Llamosas A, Eibes G, Ferreira-Santos P et al (2023) Microwave-assisted autohydrolysis of avocado seed for the recovery of antioxidant phenolics and glucose. Bioresource Technology 385:129432. https://doi.org/10.1016/j.biortech.2023.129432

Faizah N, Widiyastuti W, Setyawan H and Nurtono T (2024) Extraction of antioxidant and antibacterial agents from avocado (Persea americana) seed using Pulsed Electric Field method. Industrial Crops and Products 222:119803. https://doi.org/10.1016/j.indcrop.2024.119803

Feichtinger A and Scholten E (2020) Preparation of Protein Oleogels: Effect on Structure and Functionality. Foods 9. https://doi.org/10.3390/FOODS9121745

García-Maza S, Herrera-Rodríguez TC and González-Delgado ÁD (2024) Process Simulation and Technical Evaluation Using Water-Energy-Product (WEP) Analysis of an Extractive-Based Biorefinery of Creole-Antillean Avocado Produced in the Montes De María. Sustainability 16:9575. https://doi.org/10.3390/su16219575

Gil-Martín E, Forbes-Hernández T, Romero A et al (2022) Influence of the extraction method on the recovery of bioactive phenolic compounds from food industry by-products. Food Chemistry 378:13198. https://doi.org/10.1016/j.foodchem.2021.131918

Grisales-Mejía JF, Álvarez-Rivera G, Torres-Castañeda HG et al (2024a) Hass Avocado (Persea americana Mill.) residues as a new potential source of neuroprotective compounds using pressurized liquid extraction. The Journal of Supercritical Fluids 204:106117. https://doi.org/10.1016/j.supflu.2023.106117

Grisales-Mejía JF, Cedeño-Fierro V, Ortega JP et al (2024b) Advanced NADES-based extraction processes for the recovery of phenolic compounds from Hass avocado residues: A sustainable valorization strategy. Separation and Purification Technology 351:128104. https://doi.org/10.1016/J.SEPPUR.2024.128104

Grisales-Mejía JF, Torres-Castañeda H, Andrade-Mahecha MM and Martínez-Correa HA (2022) Green Extraction Methods for Recovery of Antioxidant Compounds from Epicarp, Seed, and Seed Tegument of Avocado var. Hass (Persea americana Mill.). International Journal of Food Science 2022. https://doi.org/10.1155/2022/1965757

Gullón P, del Río PG, Gullón B et al (2021) Pectooligosaccharides as Emerging Functional Ingredients: Sources, Extraction Technologies, and Biological Activities. In: Sustainable Production Technology in Food. Elsevier, pp 71–92.

Gupta A, Bobade H, Sharma R and Sharma S (2024) Technological and Analytical Aspects of Bioactive Compounds and Nutraceuticals from Roots and Tubers Sources. Bioactive Compounds and Nutraceuticals from Plant Sources 121–155. https://doi.org/10.1201/9781003455172-5

Hennessey-Ramos L, Murillo-Arango W and Guayabo GT (2019) Evaluation of a colorant and oil extracted from avocado waste as functional components of a liquid soap formulation. Revista Facultad Nacional de Agronomía Medellin 72:8855–8862. https://doi.org/10.15446/RFNAM.V72N2.74573

Herrera-Rodríguez T, Parejo-Palacio V and González-Delgado Á (2022) Computer-Aided simulation of avocado oil production in North Colombia. Chemical Engineering Transactions 92:415–420. https://doi.org/10.3303/CET2292070

Herrera-Rodríguez TC and González-Delgado ÁD (2024) Inherent Safety Index Evaluation of an Extractive-Based Creole-Antillean Avocado Biorefinery in Montes De María, Colombia. Sustainability 17:168. https://doi.org/10.3390/su17010168

Hurtado-Fernández E, Fernández-Gutiérrez A and Carrasco-Pancorbo A (2018) Avocado fruit—Persea americana. In: Exotic Fruits, Academic P. pp 37–48

Ibarra-Buenavista AE, Vázquez-Celestino D, Vázquez-Barrios ME et al (2020) The use of instant controlled pressure drop (DIC) method improves the extraction of bioactive compounds from ‘Hass’ avocado seed. Acta Horticulturae 1299:377–382. https://doi.org/10.17660/ACTAHORTIC.2020.1299.56

Illanes A, Wilson L and Vera C (2014) Problem Solving in Enzyme Biocatalysis.

Jia M-Z, Fu X-Q, Deng L et al (2021) Phenolic extraction from grape (Vitis vinifera) seed via enzyme and microwave co-assisted salting-out extraction. Food Biosci 40:100919.

Jiang F, Chen R, Tang C et al (2023) Polysaccharide extracted from cultivated Sanghuangporous vaninii spores using three-phase partitioning with enzyme/ultrasound pretreatment: Physicochemical characteristics and its biological activity in vitro. International Journal of Biological Macromolecules 253:126622. https://doi.org/10.1016/J.IJBIOMAC.2023.126622

Kitrytė V, Narkevičiūtė A, Tamkutė L et al (2020) Consecutive high-pressure and enzyme assisted fractionation of blackberry (Rubus fruticosus L.) pomace into functional ingredients: Process optimization and product characterization. Food Chem 312:126072.

Kumar M, Zhang B, Potkule J et al (2023) Cottonseed Oil: Extraction, Characterization, Health Benefits, Safety Profile, and Application. Food Anal Methods 16:266–280. https://doi.org/10.1007/s12161-022-02410-3

Lacerda VR, Bastante CC, Machado ND et al (2024) Supercritical extraction of betalains from the peel of different pitaya species. Journal of the Science of Food and Agriculture 104:5513–5521. https://doi.org/10.1002/JSFA.13383

Li D, Chen M, Meng X et al (2024) Extraction, purification, structural characteristics, bioactivity and potential applications of polysaccharides from Avena sativa L.: A review. International Journal of Biological Macromolecules 265:130891. https://doi.org/10.1016/J.IJBIOMAC.2024.130891

Li M, Li T, Hu X et al (2021) Structural, rheological properties and antioxidant activities of polysaccharides from mulberry fruits (Murus alba L.) based on different extraction techniques with superfine grinding pretreatment. International Journal of Biological Macromolecules 183:1774–1783. https://doi.org/10.1016/j.ijbiomac.2021.05.108

López‐Fernández O, Bohrer BM, Munekata PES et al (2022) Improving oxidative stability of foods with apple‐derived polyphenols. Comprehensive Reviews in Food Science and Food Safety 21:296–320. https://doi.org/10.1111/1541-4337.12869

Lorenzo JM, Pateiro M, Domínguez R et al (2018) Berries extracts as natural antioxidants in meat products: A review. Food Research International 106:1095–1104. https://doi.org/10.1016/J.FOODRES.2017.12.005

Macedo GA, Santana AL, Crawford LM et al (2021) Integrated microwave- and enzyme-assisted extraction of phenolic compounds from olive pomace. LWT - Food Science and Technology 138:110621.

Montes CF, Rojas-González AF and Rodríguez-Barona S (2020) Evaluation of Extracts Obtained from FruitWastes Using Different Methods. Ingeniería 26:77–92. https://doi.org/10.14483/23448393.16525

Muthusamy S, Udayakumar GP and Narala VR (2021) Recent advances in the extraction and characterization of seed polysaccharides, and their bioactivities: A review. Bioactive Carbohydrates and Dietary Fibre 26:100276.

Otero-Guzman N and Andrade-Pizarro R (2025) Bioactive compounds from tropical fruit by-products: Extraction, characterization and therapeutic potential. Journal of Agriculture and Food Research 21:101983. https://doi.org/10.1016/j.jafr.2025.101983

Palla C, Giacomozzi A, Genovese DB and Carrín ME (2017) Multi–objective optimization of high oleic sunflower oil and monoglycerides oleogels: Searching for rheological and textural properties similar to margarine. Food Structure 12:1–14. https://doi.org/10.1016/j.foostr.2017.02.005

Pérez-Monterroza EJ, Ciro-Velásquez HJ and Arango Tobón JC (2016) Study of the crystallization and polymorphic structures formed in oleogels from avocado oil. Revista Facultad Nacional de Agronomía Medellin 69:7945–7954. https://doi.org/10.15446/rfna.v69n2.59139

Pérez-Monterroza EJ, Marquez-Cardozo CJ and Ciro-Velasquez HJ (2014) Rheological behavior of avocado (Persea americana Mill, cv. Hass) oleogels considering the combined effect of structuring agents. LWT - Food Science and Technology 59:673–679. https://doi.org/10.1016/j.lwt.2014.07.020

Phongthai S and Rawdkuen S (2020) Fractionation and characterization of antioxidant peptides from rice bran protein hydrolysates stimulated by in vitro gastrointestinal digestion. Cereal Chem 97:316–325. https://doi.org/10.1002/CCHE.10247

Plazzotta S, Calligaris S and Manzocco L (2019) Structure of oleogels from κ-carrageenan templates as affected by supercritical-CO2- drying, freeze-drying and lettuce-filler addition. Food Hydrocolloids 96:1–10. https://doi.org/10.1016/j.foodhyd.2019.05.008

Pojić M, Teslić N, Banjac V et al (2024) Natural deep eutectic solvents for efficient recovery of bioactive compounds from by-product of industrial hemp processing: Pretreatment, modeling and optimization. Industrial Crops and Products 222:119617. https://doi.org/10.1016/j.indcrop.2024.119617

Rahayu N, Gunawan S and Aparamarta HW (2023) Extraction of Bioactive Compound from Mangosteen Peel (Garcinia mangostana L.) Using Ternary System Solvent. AIP Conference Proceedings 2828. https://doi.org/10.1063/5.0164608

Restrepo-Serna DL and Cardona-Alzate CA (2024) The avocado peel as a source of catechins: A comparison between extraction technologies and the influence of fruit variety. Sustainable Chemistry and Pharmacy 39:101556. https://doi.org/10.1016/j.scp.2024.101556

Salazar-López NJ, Domínguez-Avila JA, Yahia EM et al (2020) Avocado fruit and by-products as potential sources of bioactive compounds. Food Research International 138 Part A:1–57. https://doi.org/10.1016/j.foodres.2020.109774

Sánchez-Quezada V, Velázquez-Guadarrama N, Mendoza-Elizalde S et al (2024) Bioaccessibility of bioactive compounds present in Persea americana Mill. seed ingredient during oral-gastric digestion with antibacterial capacity against Helicobacter pylori. Journal of Ethnopharmacology 331:118259. https://doi.org/10.1016/j.jep.2024.118259

Sandoval Aldana A, Forero Longas F, García Lozano J and Londoño Bonilla M (2020) Cosecha, manejo de poscosecha y agroindustria. In: Actualización tecnológica y buenas prácticas agrícolas (BPA) en el cultivo de aguacate. pp 651–714.

Sharma P, Nickerson MT and Korber DR (2024) Valorization of berry pomace for extraction of polyphenol compounds and its co-encapsulation with probiotic bacteria. Food Bioscience 62:105124. https://doi.org/10.1016/j.fbio.2024.105124

Tang F, Banker T, Green HS et al (2024) Analysis and authentication of avocado oil by low-field benchtop NMR spectroscopy and chemometrics. Journal of Food Science 89:4276–4285. https://doi.org/10.1111/1750-3841.17142

Tanpichai S, Boonmahitthisud A, Soykeabkaew N and Ongthip L (2022) Review of the recent developments in all-cellulose nanocomposites: Properties and applications. Carbohydrate Polymers 286:119192. https://doi.org/10.1016/j.carbpol.2022.119192

Thakur D, Singh A, Prabhakar PK et al (2022) Optimization and characterization of soybean oil-carnauba wax oleogel. LWT - Food Science and Technology 157:113108. https://doi.org/10.1016/j.lwt.2022.113108

Vo TP, Nguyen THP, Nguyen VK et al (2024) Extracting bioactive compounds and proteins from Bacopa monnieri using natural deep eutectic solvents. PLoS One 19:e0300969. https://doi.org/10.1371/journal.pone.0300969

Wang J, Wang J, Ye J et al (2019) Influence of high-intensity ultrasound on bioactive compounds of strawberry juice: Profiles of ascorbic acid, phenolics, antioxidant activity and microstructure. Food Control 96:128–136. https://doi.org/10.1016/J.FOODCONT.2018.09.007

Wang S, Lin AHM, Han Q and Xu Q (2020) Evaluation of Direct Ultrasound-Assisted Extraction of Phenolic Compounds from Potato Peels. Processes 2020, Vol 8, Page 1665 8:1665. https://doi.org/10.3390/PR8121665

Wen C, Zhang J, Zhang H et al (2018) Advances in ultrasound assisted extraction of bioactive compounds from cash crops – A review. Ultrasonics Sonochemistry 48:538–549. https://doi.org/10.1016/J.ULTSONCH.2018.07.018

Xu L, Liu L, Wang Y et al (2024) Oleogel for improving the texture and flavor in rice cooking: Preparation from natural wax and rice bran oil and characterization. Journal of Cereal Science 118:103955. https://doi.org/10.1016/J.JCS.2024.103955

Yang M, Gong H, Jiang C gong et al (2024) Effects of different extraction methods on the structure and function of blackberry seed polysaccharides. International Journal of Food Science Technology 59:4866–4879. https://doi.org/10.1111/IJFS.17215

Yang S, Yang G, Chen X et al (2020) Interaction of monopalmitate and carnauba wax on the properties and crystallization behavior of soybean oleogel. Grain & Oil Science and Technology 3:49–56. https://doi.org/10.1016/j.gaost.2020.05.001

Yepes-Betancur DP, Sánchez Giraldo L and Márquez Cardozo CJ (2017) Extracción termomecánica y caracterización fisicoquímica del aceite de aguacate (Persea americana Mill. cv. Hass). Informador Técnico 81:75–85. https://doi.org/10.23850/22565035.728

Yepes-Betancur DP, Márquez-Cardozo CJ, Cadena-Chamorro EM et al (2021) Solid-state fermentation – assisted extraction of bioactive compounds from Hass avocado seeds. Food and Bioproducts Processing 126:155–163. https://doi.org/10.1016/j.fbp.2020.10.012

Zhang S, Lin S, Zhang J and Liu W (2024a) Ultrasound-assisted natural deep eutectic solvent extraction of anthocyanin from Vitis davidii Foex. pomace: Optimization, identification, antioxidant activity and stability. Heliyon 10:e33066. https://doi.org/10.1016/j.heliyon.2024.e33066

Zhang Z fa, Lv G ying, Song T ting et al (2024b) Effects of different extraction methods on the structural and biological properties of Hericium coralloides polysaccharides. Food Chemistry 445:138752. https://doi.org/10.1016/J.FOODCHEM.2024.138752

Zulfiqar A, Shabbir MA, Tahir F et al (2024) Development of oleogel by structuring the blend of corn oil and sunflower oil with beeswax to replace margarine in cookies. Food Chem X 23. https://doi.org/10.1016/j.fochx.2024.101676

Zuorro A, Lavecchia R, González-Delgado ÁD et al (2019) Optimization of Enzyme-Assisted Extraction of Flavonoids from Corn Husks. Processes 2019, Vol 7, Page 804 7:804. https://doi.org/10.3390/PR7110804

How to Cite

APA

Barragán-Viloria, K., Ciro-Velásquez, H. J., Cadena-Chamorro, E. M. & Salcedo-Mendoza, J. G. (2026). Technology trends in extraction of bioactive compounds creole avocado and their application in lipid matrices. Revista Facultad Nacional de Agronomía Medellín, 79, e120650. https://doi.org/10.15446/rfnam.v79.120650

ACM

[1]
Barragán-Viloria, K., Ciro-Velásquez, H.J., Cadena-Chamorro, E.M. and Salcedo-Mendoza, J.G. 2026. Technology trends in extraction of bioactive compounds creole avocado and their application in lipid matrices. Revista Facultad Nacional de Agronomía Medellín. 79, (Jan. 2026), e120650. DOI:https://doi.org/10.15446/rfnam.v79.120650.

ACS

(1)
Barragán-Viloria, K.; Ciro-Velásquez, H. J.; Cadena-Chamorro, E. M.; Salcedo-Mendoza, J. G. Technology trends in extraction of bioactive compounds creole avocado and their application in lipid matrices. Rev. Fac. Nac. Agron. Medellín 2026, 79, e120650.

ABNT

BARRAGÁN-VILORIA, K.; CIRO-VELÁSQUEZ, H. J.; CADENA-CHAMORRO, E. M.; SALCEDO-MENDOZA, J. G. Technology trends in extraction of bioactive compounds creole avocado and their application in lipid matrices. Revista Facultad Nacional de Agronomía Medellín, [S. l.], v. 79, p. e120650, 2026. DOI: 10.15446/rfnam.v79.120650. Disponível em: https://revistas.unal.edu.co/index.php/refame/article/view/120650. Acesso em: 9 feb. 2026.

Chicago

Barragán-Viloria, Katerine, Héctor José Ciro-Velásquez, Edith Marleny Cadena-Chamorro, and Jairo Guadalupe Salcedo-Mendoza. 2026. “Technology trends in extraction of bioactive compounds creole avocado and their application in lipid matrices”. Revista Facultad Nacional De Agronomía Medellín 79 (January):e120650. https://doi.org/10.15446/rfnam.v79.120650.

Harvard

Barragán-Viloria, K., Ciro-Velásquez, H. J., Cadena-Chamorro, E. M. and Salcedo-Mendoza, J. G. (2026) “Technology trends in extraction of bioactive compounds creole avocado and their application in lipid matrices”, Revista Facultad Nacional de Agronomía Medellín, 79, p. e120650. doi: 10.15446/rfnam.v79.120650.

IEEE

[1]
K. Barragán-Viloria, H. J. Ciro-Velásquez, E. M. Cadena-Chamorro, and J. G. Salcedo-Mendoza, “Technology trends in extraction of bioactive compounds creole avocado and their application in lipid matrices”, Rev. Fac. Nac. Agron. Medellín, vol. 79, p. e120650, Jan. 2026.

MLA

Barragán-Viloria, K., H. J. Ciro-Velásquez, E. M. Cadena-Chamorro, and J. G. Salcedo-Mendoza. “Technology trends in extraction of bioactive compounds creole avocado and their application in lipid matrices”. Revista Facultad Nacional de Agronomía Medellín, vol. 79, Jan. 2026, p. e120650, doi:10.15446/rfnam.v79.120650.

Turabian

Barragán-Viloria, Katerine, Héctor José Ciro-Velásquez, Edith Marleny Cadena-Chamorro, and Jairo Guadalupe Salcedo-Mendoza. “Technology trends in extraction of bioactive compounds creole avocado and their application in lipid matrices”. Revista Facultad Nacional de Agronomía Medellín 79 (January 15, 2026): e120650. Accessed February 9, 2026. https://revistas.unal.edu.co/index.php/refame/article/view/120650.

Vancouver

1.
Barragán-Viloria K, Ciro-Velásquez HJ, Cadena-Chamorro EM, Salcedo-Mendoza JG. Technology trends in extraction of bioactive compounds creole avocado and their application in lipid matrices. Rev. Fac. Nac. Agron. Medellín [Internet]. 2026 Jan. 15 [cited 2026 Feb. 9];79:e120650. Available from: https://revistas.unal.edu.co/index.php/refame/article/view/120650

Download Citation

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Article abstract page views

4

Downloads

Download data is not yet available.