Assessment of the hazards associated with water quality for irrigation in the Environmental Interceptor Canal of the RUT District, Colombia
Evaluación de los peligros asociados a la calidad del agua para riego en el Canal Interceptor Ambiental del Distrito RUT, Colombia
DOI:
https://doi.org/10.15446/rfnam.v79.120876Keywords:
Water allocation, Agricultural resources, Risk management, Soil salinity, Corrosion (en)Asignación de agua, Recursos agrícolas, Gestión de riesgos, Salinidad del suelo, Corrosión (es)
Downloads
The Environmental Interceptor Canal supplies irrigation water to approximately 2,951 ha of agricultural land, primarily using pumped river water and effluents from the municipalities of Roldanillo, La Unión, and Toro's domestic wastewater treatment systems. In response to declining crop productivity, increased operational costs of irrigation systems, and constraints on export activities, this study aimed to evaluate the potential hazards associated with the use of water from this source for agricultural irrigation. Three composite sampling campaigns were conducted at seven points along the canal, and physicochemical and microbiological parameters were analyzed following standardized methodologies. The results revealed four main issues: a high microbiological hazard, evidenced by median fecal coliform (FC) concentrations exceeding 10,000 MPN 100 mL-1; a moderate to high hazard of chemical soil degradation due to the presence of salts and sodium (Na⁺); a high corrosion hazard; and a high hazard of emitter clogging associated with iron (Fe²⁺) concentrations above 1.5 mg L-1 and elevated median concentrations of total suspended solids (TSS). Overall, the results indicate that the water quality of the canal presents significant limitations for agricultural irrigation, highlighting the need to implement management, treatment, and control measures to reduce operational risks, comply with regulatory criteria, and improve the sustainability of irrigation systems and agricultural productivity in the study area.
El Canal Interceptor Ambiental abastece agua de riego a aproximadamente 2,951 ha de uso agrícola, utilizando principalmente agua bombeada de un río y descargas provenientes de los sistemas de tratamiento de aguas residuales domésticas de los municipios de Roldanillo, La Unión y Toro. Ante el descenso de la productividad de los cultivos, el aumento de los costos operativos de los sistemas de riego y las restricciones para la exportación, este estudio tuvo el objetivo de evaluar los peligros potenciales asociados al uso del agua de esta fuente para riego agrícola. Se realizaron tres campañas de muestreo compuesto en siete puntos a lo largo del canal, analizando parámetros fisicoquímicos y microbiológicos conforme a las metodologías estandarizadas. Los resultados evidenciaron cuatro problemáticas principales: un elevado peligro microbiológico, evidenciado por medianas de coliformes fecales (FC) superiores a 10.000 NMP 100 mL-1, medio a alto peligro de degradación química de suelos a causa de la presencia de sales y sodio (Na+), alto peligro por corrosión y alto peligro de taponamiento de emisores de riego debido a la concentración de hierro (Fe2+) mayores a 1,5 mg L-1 y concentraciones medianas elevadas para los sólidos suspendidos totales (SST). En conjunto, los resultados indican que la calidad del agua del canal presenta limitaciones relevantes para su uso en riego agrícola, lo que resalta la necesidad de implementar medidas de manejo, tratamiento y control que permitan reducir los riesgos operativos, cumplir con los criterios regulatorios y mejorar la sostenibilidad de los sistemas de riego y la productividad agrícola en la zona.
References
Angelakis AN, Tchobanoglous G, Capodaglio AG and Tzanakakis VA (2024) The Importance of Nonconventional Water Resources under Water Scarcity. Water 16(7): Article 7. https://doi.org/10.3390/w16071015
Anyango GW, Bhowmick GD and Sahoo Bhattacharya N (2024) A critical review of irrigation water quality index and water quality management practices in micro-irrigation for efficient policy making. Desalination and Water Treatment 318: 100304. https://doi.org/10.1016/j.dwt.2024.100304
Barona S (2022) Propuesta Para La Valoración Integral De La Amenaza De La Calidad Del Agua En Riego Estudio De Caso: Subzona Hidrográfica El Guachal - Valle Del Cauca (Tesis de maestría). Universidad del Valle, Santiago de Cali, Colombia.
Drechsel P, Marjani Zadeh S and Pedrero F (2023) Water quality in agriculture: Risks and risk mitigation. FAO & IWMI, Roma. 354 p. https://doi.org/10.4060/cc7340en
Cardona-Almeida C and Suárez A (2024) Integrated Water Resources Management in Colombia: A Historical Perspective. Ambiente & Sociedade 27: e01187. https://doi.org/10.1590/1809-4422asoc0118r7vu27L1OA
Demerdash DE, Omar MED, El-Din MN et al (2022) Development of a quality-based irrigation water security index. Ain Shams Engineering Journal 13(5): 101735. https://doi.org/10.1016/j.asej.2022.101735
Echeverri-Sánchez A (2022) Methodological proposal to assess the vulnerability of soils to salinization in flat area irrigation districts. Revista Ingenierías Universidad de Medellín 21(40): 28–43. https://doi.org/10.22395/rium.v21n40a3
Echeverri-Sánchez A, Pérez CF, Angulo Rojas PA and Urrutia-Cobo N (2016) A Methodological Approach for Assessing Soil Salinity Hazard in Irrigated Areas. Case Study: The rut Irrigation District, Colombia. Revista Ingenierías Universidad de Medellín 15(29): Article 29. https://doi.org/10.22395/rium.v15n29a1
Echeverri-Sánchez A, Angulo-Rojas P, Saavedra-Corredor D, Pérez CF and Urrutia-Cobo N (2017) Assessing Soil Salinity Risk in the RUT Irrigation District, Colombia. Orinoquía 21(Suppl. 1): 76–82. https://doi.org/10.22579/20112629.433
FAO – Food and Agriculture Organization and WHO – World Health Organization (2021) Safety and quality of water used with fresh fruits and vegetables. Microbiological Risk Assessment Series No. 37. Rome. https://doi.org/10.4060/cb7678en
Department of Water Affairs and Forestry (1996) South African Water Quality Guidelines Agricultural Use: Irrigation. Department of Water Affairs and Forestry, Republic of South Africa 4. https://www.dws.gov.za/iwqs/wq_guide/edited/Pol_saWQguideFRESHIrrigationvol4.pdf
Fernandes LS, Galvão A, Santos R and Monteiro S (2023) Impact of water reuse on agricultural practices and human health. Environmental Research 216: 114762. https://doi.org/10.1016/j.envres.2022.114762
Galvis A, Van der Steen P and Gijzen H (2018) Validation of the Three-Step Strategic Approach for Improving Urban Water Management and Water Resource Quality Improvement. Water 10(2):188. https://doi.org/10.3390/w10020188
Geilfus CM (2018) Chloride: From Nutrient to Toxicant. Plant and Cell Physiology 59(5): 877–886. https://doi.org/10.1093/pcp/pcy071
Hailu B and Mehari H (2021) Impacts of soil salinity/sodicity on soil-water relations and plant growth in dry land areas: A review. Journal of Natural Sciences Research 12(3):1–10. https://doi.org/10.7176/JNSR/12-3-01
Helmecke M, Fries E and Schulte C (2020) Regulating water reuse for agricultural irrigation: risks related to organic micro-contaminants. Environ Sci Eur 32, 4. https://doi.org/10.1186/s12302-019-0283-0
Ingrao C, Strippoli R, Lagioia G and Huisingh D (2023) Water scarcity in agriculture: An overview of causes, impacts and approaches for reducing the risks. Heliyon 9(8): e18507. https://doi.org/10.1016/j.heliyon.2023.e18507
IDEAM - Instituto de Hidrología, Meteorología y Estudios Ambientales (2002) Guía para el Monitoreo de Vertimientos, Aguas Superficiales y Aguas Subterráneas. https://corponor.gov.co/corponor/sigescor2010/EVALUACION%2CSEGUIMIENTO%20Y%20CONTROL/Guia_monitoreo_IDEAM.pdf
Kundu S, Perinjelil SJ and Thakur N (2022) Soil salinization and bioremediation using halophiles and halotolerant microorganisms. pp. 231–256. In: Santoyo G, Kumar A, Aamir M, & Uthandi S (eds.). Mitigation of Plant Abiotic Stress by Microorganisms. 1.ª ed. Academic Press, Londres. 428 p.
Lee TJ, Luitel BP and Kang WH (2011) Growth and physiological response to manganese toxicity in Chinese cabbage (Brassica rapa L. ssp. Campestris). Hortic Environ Biotechnol 52(3):252–258. https://doi.org/10.1007/s13580-011-0224-3
Lei GJ, Zhu XF, Wang ZW, Dong F, Dong NY and Zheng SJ (2014) Abscisic acid alleviates iron deficiency by promoting root iron reutilization and transport from root to shoot in Arabidopsis. Plant Cell Environ 37(4):852–863. https://doi.org/10.1111/pce.12203
Lu Y and Fricke W (2023) Salt Stress—Regulation of Root Water Uptake in a Whole-Plant and Diurnal Context. Int J Mol Sci 24(9):8070. https://doi.org/10.3390/ijms24098070
Madera CA, Silva J, Mara DD and Torres P (2009) Wastewater use in agriculture: Irrigation of sugar cane with effluents from the Cañaveralejo wastewater treatment plant in Cali, Colombia. Environmental Technology 30(10):1011–1015. https://doi.org/10.1080/09593330903020498
Mageshkumar P and Vennila G (2020) Assessment of errors in water quality data using ion balancing methods: A case study from Cauvery River, South India. Indian J Geo-Mar Sci 49(1):57–62. https://www.researchgate.net/publication/339426854
Ministerio de Medio Ambiente y Desarrollo Sostenible (2015) Decree No. 1076 of May 26, 2015: “Decreto Único Reglamentario del Sector Ambiente y Desarrollo Sostenible” [Regulatory Single Decree for the Environment and Sustainable Development Sector]. Diario Oficial No. 49 523. https://www.funcionpublica.gov.co/eva/gestornormativo/norma_pdf.php?i=78153
Muniz GL, Oliveira ALG, Benedito MG, Cano ND et al (2023) Risk Evaluation of Chemical Clogging of Irrigation Emitters via Geostatistics and Multivariate Analysis in the Northern Region of Minas Gerais, Brazil. Water 15(4): Article 4. https://doi.org/10.3390/w15040790
Panday H, Khanal S, Khatiwada N and Adhikari B (2021) Water corrosion and scale formation problem and its solution in water supply schemes – A case study on Padampokhari and Mahendranagar scheme. Kathmandu University Journal of Science, Engineering and Technology 15(1). https://doi.org/10.3126/kuset.v15i1.63443
Pardo Picazo MÁ, Juárez JM and García-Márquez D (2018) Energy Consumption Optimization in Irrigation Networks Supplied by a Standalone Direct Pumping Photovoltaic System. Sustainability 10(11). https://doi.org/10.3390/su10114203
Shah M, Sircar A, Varsada R, Vaishnani S, Savaliya U et al (2018) Assessment of geothermal water quality for industrial and irrigation purposes in the Unai geothermal field, Gujarat, India. Groundw Sustain Dev 8. https://doi.org/10.1016/j.gsd.2018.08.006
Simsek C and Gunduz O (2007) IWQ Index: A GIS-Integrated Technique to Assess Water Quality Irrigation. Environ Monit Assess 128(1):277–300. https://doi.org/10.1007/s10661-006-9312-8
Singh KR, Goswami AP, Kalamdhad AS and Kumar B (2020) Development of irrigation water quality index incorporating information entropy. Environment, Development and Sustainability 22: 3119–3132. https://doi.org/10.1007/s10668-019-00338-z
Singh S, Ghosh NC, Gurjar S, Krishan G, Kumar S and Berwal P (2018) Index-based assessment of suitability of water quality for irrigation purpose under Indian conditions. Environ Monit Assess 190(1):29. https://doi.org/10.1007/s10661-017-6407-3
Tartabull T and Betancourt C (2016) La calidad del agua para el riego. Principales indicadores de medida y procesos que la impactan. Revista Científica Agroecosistemas 4(1): 47–61. https://aes.ucf.edu.cu/index.php/aes/article/view/75
Villafañe R (2011) Sosalriego: Un procedimiento para diagnosticar los riesgos de sodificación y salinización del suelo con el agua de riego. Bioagro 23(1):57–64. https://ve.scielo.org/scielo.php?pid=S1316-33612011000100008&script=sci_arttext&
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License
Copyright (c) 2026 Revista Facultad Nacional de Agronomía Medellín

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The journal allows the author(s) to maintain the exploitation rights (copyright) of their articles without restrictions. The author(s) accept the distribution of their articles on the web and in paper support (25 copies per issue) under open access at local, regional, and international levels. The full paper will be included and disseminated through the Portal of Journals and Institutional Repository of the Universidad Nacional de Colombia, and in all the specialized databases that the journal considers pertinent for its indexation, to provide visibility and positioning to the article. All articles must comply with Colombian and international legislation, related to copyright.
Author Commitments
The author(s) undertake to assign the rights of printing and reprinting of the material published to the journal Revista Facultad Nacional de Agronomía Medellín. Any quotation of the articles published in the journal should be made given the respective credits to the journal and its content. In case content duplication of the journal or its partial or total publication in another language, there must be written permission of the Director.
Content Responsibility
The Faculty of Agricultural Sciences and the journal are not necessarily responsible or in solidarity with the concepts issued in the published articles, whose responsibility will be entirely the author or the authors.






