Published

2024-09-01

Artificial neural networks in the retention of anthocyanins and total phenolics in the osmotic pre-treatment of Biloxi variety blueberry (Vaccinium corymbosum L.) jam

Redes neuronales artificiales en la retención de antocianinas y fenoles totales en el pre-tratamiento osmótico de mermelada de arándano (Vaccinium corymbosum L.) variedad Biloxi

DOI:

https://doi.org/10.15446/rfnam.v77n3.107488

Keywords:

Artificial intelligent, Machine learning , Multiple-response, Single-response (en)
Inteligencia artificial, Aprendizaje de máquina, Múltiple-respuesta, Simple-respuesta (es)

Downloads

Authors

Blueberries are a fruit that is an important source of bioactive components beneficial to the human diet, such as anthocyanins and total phenolics, which are altered by the use of high temperatures during processing. This study aimed to evaluate the use of artificial neural networks in the optimization of sucrose concentration and time for the osmotic pre-treatment of blueberries of the Biloxi variety, to retain the greatest amount of anthocyanins and total phenolics in the subsequent preparation of jam. Artificial neural networks of the feedforward type were used, with a Backpropagation training algorithm with Levenberg-Marquardt weight adjustment, to achieve the optimal predicted combination that maximizes the retention of these bioactive components. The model achieved its best performance with 11 neurons in the hidden layer, achieving an R2 coefficient of 0.98 and a mean square error of 4.76, indicating a strong ability for generalization. Artificial neural networks allowed to obtain the best optimal combination of predicted multiple responses of factors consisting of a sucrose concentration of 1.64 M and a time of 211.52 min, which retained a higher content of total monomeric anthocyanins with 70.98 mg cyanidin-3-O-glucoside 100 g-1 of jam and total phenolics with 110.54 mg GAE g-1 of jam. On the other hand, through single-response optimization was obtained that the combination of experimental factors that maximized total anthocyanins (71.59 mg cyanidin-3-O-glucoside 100 g-1 of jam) was 1.54 M of sucrose and 232.73 min and for total phenols (111.06 mg GAE g-1 of jam) 1.79 M of sucrose and 196.36 min. The use of artificial neural networks is an excellent alternative for modeling phenomena, compared to traditional methods.

El arándano es un fruto que posee una fuente importante de componentes bioactivos beneficiosos para la dieta humana, como las antocianinas y fenoles totales, que se ven alterados por el uso de temperaturas altas durante el procesamiento. El objetivo de este estudio fue evaluar el uso de redes neuronales artificiales en la optimización de la concentración de sacarosa y el tiempo para el pretratamiento osmótico de arándanos de la variedad Biloxi, con la finalidad de retener la mayor cantidad de antocianinas y componentes fenólicos totales en la elaboración posterior de mermelada. Se utilizó redes neuronales artificiales del tipo feedfoward, con algoritmo de entrenamiento de Backpropagation con ajuste de pesos de Levenberg-Marquardt para lograr la combinación óptima predicha que maximice la retención de estos componentes bioactivos. El modelo logró su mejor rendimiento con 11 neuronas en la capa oculta, logrando un coeficiente R2 de 0,98 y un error cuadrático medio de 4,76; lo que indica una gran capacidad de generalización. Las redes neuronales artificiales permitieron obtener la mejor combinación de los factores experimentales  - concentración de sacarosa (1,64 M) y tiempo (211,52 min)- que maximizaron los contenidos de antocianinas monoméricas totales (70,98 mg cianidina-3-Oglucósido 100 g-1) y fenoles totales (110,54 mg AGE g-1) presentes en mermelada. En cambio, mediante optimización de respuesta se obtuvo que la combinación de factores experimentales que maximizó las antocianinas totales (71,59 mg cianidina-3-O-glucósido 100 g-1 de mermelada) fue 1,54 M de sacarosa y 232,73 min y para fenoles totales (111,06 mg GAE g-1 de mermelada) 1,79 M y 196,36 min. El uso de redes neuronales artificiales es una excelente alternativa para modelar fenómenos, en comparación con los métodos tradicionales.

References

Ahmed I, Qazi I and Jamal S (2016) Developments in osmotic dehydration technique for the preservation of fruits and vegetables. Innovative Food Science and Emerging Technologies 34:29-43. https://doi.org/10.1016/j.ifset.2016.01.003

Alabi K, Olalusi A, Olaniyan A, Fadeyibi A and Gabriel L (2022) Effects of osmotic dehydration pretreatment on freezing characteristics and quality of frozen fruits and vegetables. Journal of Food Process Engineering 45(8):e14037. https://doi.org/10.1111/jfpe.14037

Barraza-Jáuregui G, Vega G, Valeriano J, Obregón J, Siche R and Miano A (2017) Osmotic pretreatment to assure retention of phenolics and anthocyanins in berry jams. Food Bioscience 17: 24–28. https://doi.org/10.1016/j.fbio.2016.12.001

Brüggenwirth M and Knoche M (2016) Factors affecting mechanical properties of the skin of sweet cherry fruit. Journal of the American Society for Horticultural Science. American Society for Horticultural Science 141:45–53. https://doi.org/10.21273/JASHS.141.1.45

Chang V, Rupa V, Qianwen A and Hossain MA (2022) An artificial intelligence model for heart disease detection using machine learning algorithms. Healthcare Analytics 2:100016. https://doi.org/10.1016/j.health.2022.100016

Chhajer P, Shah M and Kshirsagar A (2022) The applications of artificial neural networks, support vector machines, and long–short term memory for stock market prediction. Decision Analytics Journal 2:100015. https://doi.org/10.1016/j.dajour.2021.100015

Çetin N and Sağlam C (2022) Rapid detection of total phenolics, antioxidant activity and ascorbic acid of dried apples by chemometric algorithms. Food Bioscience 47:101670. https://doi.org/10.1016/j.fbio.2022.101670

Cichowska J, Figiel A, Stasiak-Różańska L and Witrowa-Rajchert D (2019) Modeling of osmotic dehydration of apples in sugar alcohols and dihydroxyacetone (DHA) solutions. Foods 8: 20. https://doi.org/10.3390/foods8010020

Costa E, Hess A, Finger C, Schons C, Klein D et al (2022) Enhancing Height Predictions of Brazilian Pine for Mixed, Uneven-Aged Forests Using Artificial Neural Networks. Forests 13:1284. https://doi.org/10.3390/f13081284

Dias R, Johnson T, Ferrão F, Munoz P, de la Mata P and Harynuk J (2023) Improved sample storage, preparation and extraction of blueberry aroma volatile organic compounds for gas chromatography. Journal of Chromatography Open 3:100075. https://doi.org/10.1016/j.jcoa.2022.100075

Dong R, Tian J, Huang Z, Yu Q, Xie J et al (2023) Intermolecular binding of blueberry anthocyanins with water-soluble polysaccharides: Enhancing their thermostability and antioxidant abilities. Food Chemistry 410:135375. https://doi.org/10.1016/j.foodchem.2022.135375

Giusti M and Wrolstad R (2001) Characterization and measurement of anthocyanins by UV–visible spectroscopy. Current Protocols in Food Analytical Chemistry. http://doi.org/10.1002/0471142913.faf0102s00

Hesami M, Condori-Apfata J, Valencia M and Mohammadi M (2020) Application of Artificial Neural Network for Modeling and Studying In Vitro Genotype-Independent Shoot Regeneration in Wheat. Applied Sciences 10(15):5370. https://doi.org/10.3390/app10155370

Lee J, Durst R and Wrolstad R (2005) Determination of total monomeric anthocyanin pigment content of fruit juices, beverages, natural colorants, and wines by the pH differential method: collaborative study. Journal of AOAC International 88(5):1269-1278. https://doi.org/10.1093/jaoac/88.5.1269

Liao W, Shen J, Manickam S, Li S, Tao Y, Li D, Liu D and Han Y (2023) Investigation of blueberry juice fermentation by mixed probiotic strains: Regression modeling, machine learning optimization and comparison with fermentation by single strain in the phenolic and volatile profiles. Food Chemistry 405:134982. https://doi.org/10.1016/j.foodchem.2022.134982

Lu-Lu Z, Jing-Nan R, Yan Z, Jia-Jia L, Ya-Li L et al (2016) Effects of modified starches on the processing properties of heat-resistant blueberry jam. LWT - Food Science and Technology 72 :447–456. https://doi.org/10.1016/j.lwt.2016.05.018

Piljac-Zegarac J, Valek L, Martinez S and Belšcak A (2009) Fluctuations in the phenolic content and antioxidant capacity of dark fruit juices in refrigerated storage. Food Chemistry 113: 394–400. https://doi.org/10.1016/j.foodchem.2008.07.048

Rahman S, Sharma P and Said Z (2022) Application of Response Surface Methodology based D-optimal Design for Modeling and Optimization of Osmotic dehydration of Zucchini. Digital Chemical Engineering 4:100039. https://doi.org/10.1016/j.dche.2022.100039

Rodríguez-Hernández C, Musso M, Kyndt E and Cascallar E (2021) Artificial neural networks in academic performance prediction: Systematic implementation and predictor evaluation. Computers and Education: Artificial Intelligence 2:100018. https://doi.org/10.1016/j.caeai.2021.100018

Shinwari K and Rao P (2018) Stability of bioactive compounds in fruit jam and jelly during processing and storage: A review. Trends in Food Science & Technology 75:181–193. https://doi.org/10.1016/j.tifs.2018.02.002

Shukla R, Khan M and Srivastava A (2018) Mass transfer kinetics during osmotic dehydration of banana in different osmotic agent. International Journal of Agricultural Engineering 11:108-122. https://doi.org/10.15740/HAS/IJAE/11.1/108-122

Skrede G, Wrolstad E and Durst W (2008) Changes in anthocyanins and polyphenolics during juice processing of highbush blueberries (Vaccinium corymbosum L.). Journal of Food Science 65(2):357–364. https://doi.org/10.1111/j.1365-2621.2000.tb16007.x

Soumyabrata D, Hewei W, Chidozie S, Nishtha J, Bharadwaj V and Deepu J (2022) A predictive analytics approach for stroke prediction using machine learning and neural networks. Healthcare Analytics 2:100032. https://doi.org/10.1016/j.health.2022.100032

Vidra A and Németh A (2022) Applicability of Neural Networks for the Fermentation of Propionic Acid by Propionibacterium acidipropionici. Periodica Polytechnica Chemical Engineering 66:10–19. https://doi.org/10.3311/PPch.18283

Watanabe Y, Yoshimoto K, Okada Y and Nomura M (2011) Effect of impregnation using sucrose solution on stability of anthocyanin in strawberry jam. LWT – Food Science and Technology 44:891–895. https://doi.org/10.1016/j.lwt.2010.11.003

Winkler A, Grimm E and Knoche M (2019) Sweet Cherry Fruit: Ideal Osmometers?. Frontiers in Plant Science 10:164. https://doi.org/10.3389/fpls.2019.00164

Wicklunda T, Rosenfeldb H, Martinsenc B, Sundforb M et al (2005) Antioxidant capacity and colour of strawberry jam as influenced by cultivar and storage conditions. LWT – Food Science and Technology 38:387–391. https://doi.org/10.1016/j.lwt.2004.06.017

Wrolstad R, Durst R and Lee J (2005) Tracking color and pigment changes in anthocyanin products. Trends in Food Science & Technology 16(9):423-428. https://doi.org/10.1016/j.tifs.2005.03.019

Yu Z, Gong H, Li M and Tang D (2022) Hollow prussian blue nanozyme-richened liposome for artificial neural network-assisted multimodal colorimetric-photothermal immunoassay on smartphone. Biosensors and Bioelectronics 218:114751. https://doi.org/10.1016/j.bios.2022.114751

How to Cite

APA

Obregón Domínguez, J. A., Minchón Medina, C. A. and Barraza Jáuregui, G. del C. (2024). Artificial neural networks in the retention of anthocyanins and total phenolics in the osmotic pre-treatment of Biloxi variety blueberry (Vaccinium corymbosum L.) jam. Revista Facultad Nacional de Agronomía Medellín, 77(3), 10877–10885. https://doi.org/10.15446/rfnam.v77n3.107488

ACM

[1]
Obregón Domínguez, J.A., Minchón Medina, C.A. and Barraza Jáuregui, G. del C. 2024. Artificial neural networks in the retention of anthocyanins and total phenolics in the osmotic pre-treatment of Biloxi variety blueberry (Vaccinium corymbosum L.) jam. Revista Facultad Nacional de Agronomía Medellín. 77, 3 (Sep. 2024), 10877–10885. DOI:https://doi.org/10.15446/rfnam.v77n3.107488.

ACS

(1)
Obregón Domínguez, J. A.; Minchón Medina, C. A.; Barraza Jáuregui, G. del C. Artificial neural networks in the retention of anthocyanins and total phenolics in the osmotic pre-treatment of Biloxi variety blueberry (Vaccinium corymbosum L.) jam. Rev. Fac. Nac. Agron. Medellín 2024, 77, 10877-10885.

ABNT

OBREGÓN DOMÍNGUEZ, J. A.; MINCHÓN MEDINA, C. A.; BARRAZA JÁUREGUI, G. del C. Artificial neural networks in the retention of anthocyanins and total phenolics in the osmotic pre-treatment of Biloxi variety blueberry (Vaccinium corymbosum L.) jam. Revista Facultad Nacional de Agronomía Medellín, [S. l.], v. 77, n. 3, p. 10877–10885, 2024. DOI: 10.15446/rfnam.v77n3.107488. Disponível em: https://revistas.unal.edu.co/index.php/refame/article/view/107488. Acesso em: 11 jan. 2025.

Chicago

Obregón Domínguez, Jesús Alfredo, Carlos Alberto Minchón Medina, and Gabriela del Carmen Barraza Jáuregui. 2024. “Artificial neural networks in the retention of anthocyanins and total phenolics in the osmotic pre-treatment of Biloxi variety blueberry (Vaccinium corymbosum L.) jam”. Revista Facultad Nacional De Agronomía Medellín 77 (3):10877-85. https://doi.org/10.15446/rfnam.v77n3.107488.

Harvard

Obregón Domínguez, J. A., Minchón Medina, C. A. and Barraza Jáuregui, G. del C. (2024) “Artificial neural networks in the retention of anthocyanins and total phenolics in the osmotic pre-treatment of Biloxi variety blueberry (Vaccinium corymbosum L.) jam”, Revista Facultad Nacional de Agronomía Medellín, 77(3), pp. 10877–10885. doi: 10.15446/rfnam.v77n3.107488.

IEEE

[1]
J. A. Obregón Domínguez, C. A. Minchón Medina, and G. del C. Barraza Jáuregui, “Artificial neural networks in the retention of anthocyanins and total phenolics in the osmotic pre-treatment of Biloxi variety blueberry (Vaccinium corymbosum L.) jam”, Rev. Fac. Nac. Agron. Medellín, vol. 77, no. 3, pp. 10877–10885, Sep. 2024.

MLA

Obregón Domínguez, J. A., C. A. Minchón Medina, and G. del C. Barraza Jáuregui. “Artificial neural networks in the retention of anthocyanins and total phenolics in the osmotic pre-treatment of Biloxi variety blueberry (Vaccinium corymbosum L.) jam”. Revista Facultad Nacional de Agronomía Medellín, vol. 77, no. 3, Sept. 2024, pp. 10877-85, doi:10.15446/rfnam.v77n3.107488.

Turabian

Obregón Domínguez, Jesús Alfredo, Carlos Alberto Minchón Medina, and Gabriela del Carmen Barraza Jáuregui. “Artificial neural networks in the retention of anthocyanins and total phenolics in the osmotic pre-treatment of Biloxi variety blueberry (Vaccinium corymbosum L.) jam”. Revista Facultad Nacional de Agronomía Medellín 77, no. 3 (September 1, 2024): 10877–10885. Accessed January 11, 2025. https://revistas.unal.edu.co/index.php/refame/article/view/107488.

Vancouver

1.
Obregón Domínguez JA, Minchón Medina CA, Barraza Jáuregui G del C. Artificial neural networks in the retention of anthocyanins and total phenolics in the osmotic pre-treatment of Biloxi variety blueberry (Vaccinium corymbosum L.) jam. Rev. Fac. Nac. Agron. Medellín [Internet]. 2024 Sep. 1 [cited 2025 Jan. 11];77(3):10877-85. Available from: https://revistas.unal.edu.co/index.php/refame/article/view/107488

Download Citation

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Article abstract page views

126

Downloads

Download data is not yet available.