Published

2024-05-01

Effect of drying parameters on the physicochemical, microbiological, and sensory properties of lemon balm (Melissa officinalis L.)

Efecto de los parámetros de secado sobre las propiedades fisicoquímicas, microbiológicas y sensoriales del toronjil (Melissa officinalis L.)

DOI:

https://doi.org/10.15446/rfnam.v77n2.108992

Keywords:

Drying Kinetics, Forced air drying, Melissa, Overall quality, Sensory analysis (en)
Cinética de secado, Secado por aire forzado, Toronjil, Calidad, Análisis sensorial (es)

Downloads

Authors

Lemon balm (Melissa officinalis L.) has been recognized for multiple health benefits due to bioactive compounds. Dehydration is usually the most widely used method to preserve and concentrate these elements. However, it can also affect and totally or partially degrade the quality of the product under incorrect processing conditions. This research aimed to evaluate the effect of drying parameters on Melissa’s physicochemical, microbiological, and sensory properties. In total, four treatments were analyzed according to the experimental design (T1: 25 °C and 1.5 m s-1, T2: 25 °C and 3.0 m s-1, T3: 45 °C and 1.5 m s-1, and T4: 45 °C and 3.0 m s-1). Drying kinetics were determined using a vertical airflow dryer and a continuous weighing system. The results were compared with fresh leaves. The findings obtained show that increasing temperature and varying drying speed reduces moisture content and aw but increases enzymatic activity and essential oil content. In the drying process, temperature has a greater effect in the initial stages of the process, while drying speed on the internal structure of the raw material. By optimizing the drying conditions, it is possible to reduce the drying time by 44%. Page’s model showed excellent ability to predict drying kinetics under various drying conditions (RMSE <0.04 and R2>0.98). In terms of color, lightness decreased because of temperature, while a* and b* values were affected by non-enzymatic browning. Treatment T4 was the product with the highest acceptability. The findings obtained provide a theoretical basis to optimize the lemon balm drying process. Drying Melissa at 45 °C and 3.0 m s-1 can improve the quality and composition of the final product.

El toronjil (Melissa officinalis L.) ha sido reconocido por múltiples beneficios para la salud, en gran parte gracias a su composición nutricional y compuestos bioactivos. La deshidratación suele ser el método más utilizado para conservar y concentrar estos elementos. Sin embargo, también puede afectar y degradar total o parcialmente la calidad del producto en condiciones de procesamiento incorrectas. El objetivo de este estudio fue evaluar el efecto que tienen los parámetros de secado en las propiedades fisicoquímicas, microbiológicas y sensoriales del toronjil. En total, se analizaron cuatro tratamientos según el diseño experimental (T1: 25 °C y 1,5 m s-1; T2: 25 °C y 3,0 m s-1; T3: 45 °C y 1,5 m s-1; y T4: 45 °C y 3,0 m s-1). La cinética de secado se determinó utilizando un secador de flujo de aire vertical y un sistema de pesaje continuo. Los resultados fueron comparados con las hojas frescas. Los hallazgos obtenidos muestran que aumentar la temperatura y variar la velocidad de secado reduce el contenido de humedad y aw, pero aumenta la actividad enzimática y el contenido de aceite esencial. En el proceso de secado, se observó que la temperatura tiene un mayor efecto en etapas iniciales del proceso, mientras que la velocidad de secado en la estructura interna de la materia prima. Optimizar las condiciones de secado puede disminuir en un 44% el tiempo de secado. El modelo de Page demostró una excelente capacidad para predecir la cinética de secado en diversas condiciones de secado (RMSE <0,04 y R2 >0,98). En términos de color, la luminosidad disminuyó por efecto de la temperatura, mientras que a* y b* se vieron afectados por el pardeamiento no enzimático. El tratamiento T4 fue el producto con mayor aceptabilidad. Los hallazgos obtenidos proporcionan una base teórica para optimizar el proceso de secado del toronjil. Secar la Melissa a 45 °C y 3,0 m s-1 puede mejorar la calidad y composición del producto final.

References

Abdellatif F, Akram M, Begaa S, Messaoudi M et al (2021) Minerals, essential oils, and biological properties of Melissa officinalis L. Plants, 10(6): 1066. https://doi.org/10.3390/plants10061066 DOI: https://doi.org/10.3390/plants10061066

Ahmed S and Langthasa S (2022) Effect of dehydration methods on quality parameters of drumstick (Moringa oleifera Lam.) leaf powder. Journal of Horticultural Sciences 17(1): 137-146. https://doi.org/10.24154/jhs.v17i1.1292 DOI: https://doi.org/10.24154/jhs.v17i1.1292

Arabhosseini A, Padhye S, Huisman W, van Boxtel A et al (2011) Effect of drying on the color of tarragon (Artemisia dracunculus L.) leaves. Food and Bioprocess Technology 4: 1281-1287. https://doi.org/10.1007/s11947-009-0305-9 DOI: https://doi.org/10.1007/s11947-009-0305-9

Argyropoulos D and Müllera J (2011) Effect of convective drying on quality of lemon balm. Procedia Food Science 1: 1932-1939. https://doi.org/10.1016/j.profoo.2011.09.284 DOI: https://doi.org/10.1016/j.profoo.2011.09.284

Argyropoulos D and Müller J (2014) Kinetics of change in colour and rosmarinic acid equivalents during convective drying of lemon balm (Melissa officinalis L.). Journal of Applied Research on Medicinal and Aromatic Plants 1(1): e15-e22. https://doi.org/10.1016/j.jarmap.2013.12.001 DOI: https://doi.org/10.1016/j.jarmap.2013.12.001

Avci AB and Giachino RRA (2016) Harvest stage effects on some yield and quality characteristics of lemon balm (Melissa officinalis L.). Industrial Crops and Products 88: 23-27. https://doi.org/10.1016/j.indcrop.2016.01.002 DOI: https://doi.org/10.1016/j.indcrop.2016.01.002

Badmus UO, Taggart MA and Boyd KG (2019) The effect of different drying methods on certain nutritionally important chemical constituents in edible brown seaweeds. Journal of Applied Phycology 31: 3883–3897. https://doi.org/10.1007/s10811-019-01846-1 DOI: https://doi.org/10.1007/s10811-019-01846-1

Bonazzi C and Dumoulin E (2011) Chapter 1: Quality changes in food materials as influenced by drying processes. pp. 1-20. In Tsotsas E and Mujumdar A. (eds.). Modern drying technology: product quality and formulation. vol. 3. Wiley-VCH, Weinheim. 394 p. DOI: https://doi.org/10.1002/9783527631667.ch1

Buitrago-Zapata H, Palacios-Palacios G, Perea-Moreno L and Hincapié-Llanos C (2018) Estudio etnobotánico de plantas medicinales en tres municipios de Antioquia, Colombia. Revista Cubana de Plantas Medicinales 23(4). https://revplantasmedicinales.sld.cu/index.php/pla/article/view/665

Cárdenas-Mazón NV, Cevallos-Hermida CE, Salazar-Yacelga JC et al (2018) Uso de pruebas afectivas, discriminatorias y descriptivas de evaluación sensorial en el campo gastronómico. Domino de las Ciencias 4(3): 253-263. https://doi.org/10.23857/dc.v4i3.807 DOI: https://doi.org/10.23857/dc.v4i3.807

Casler MD (2015) Fundamentals of experimental design: Guidelines for designing successful experiments. Agronomy Journal 107(2): 692-705. https://doi.org/10.2134/agronj2013.0114 DOI: https://doi.org/10.2134/agronj2013.0114

Chakraverty A and Singh RP (2014) Postharvest technology and food process engineering. CRC Press, Boca Raton. 581 p.

Chasiotis V, Tzempelikos D and Filios A (2021) Evaluation of a moisture diffusion model for analyzing the convective drying kinetics of Lavandula x allardii leaves. Computation 9(12): 141. https://doi.org/10.3390/computation9120141 DOI: https://doi.org/10.3390/computation9120141

Chen HT and Lin YT (2018) A study of the relationships among sensory experience, emotion, and buying behavior in coffeehouse chains. Service Business 12: 551–573. https://doi.org/10.1007/s11628-017-0354-5 DOI: https://doi.org/10.1007/s11628-017-0354-5

Chong CH, Figiel A, Szummy A, Wojdyło A et al (2021) Chapter 5: Herbs drying. pp. 167-200. En Galanakis CM. (ed.). Aromatic herbs in food: Bioactive Compounds, Processing, and Applications. Academic Press, London. 447 pág. DOI: https://doi.org/10.1016/B978-0-12-822716-9.00005-6

Chua LY, Chua BL, Figiel A, Chong CH et al (2019) Drying of phyla nodiflora leaves: Antioxidant activity, volatile and phytosterol content, energy consumption, and quality studies. Processes 7: 210. https://doi.org/10.3390/pr7040210 DOI: https://doi.org/10.3390/pr7040210

da Silveira CV, Bernardina APB, de Medeiros EFJ et al (2022) Analysis and elaboration of lemon balms teas (Melissa officinalis L.) in São Gabriel da Cachoeira-AM. International Journal of Advanced Engineering Research and Science (IJAERS) 9(2): 160-164. https://doi.org/10.22161/ijaers.92.19 DOI: https://doi.org/10.22161/ijaers.92.19

dos Santos FS, de Figueirêdo RM, Queiroz AJ and Santos D (2017) Drying kinetics and physical and chemical characterization of white-fleshed ‘pitaya’ peels. Revista Brasileira de Engenharia Agrícola e Ambiental 21(12): 872–877. https://doi.org/10.1590/1807-1929/agriambi.v21n12p872-877 DOI: https://doi.org/10.1590/1807-1929/agriambi.v21n12p872-877

Dulo B, De Somer T, Moyo M et al (2023) Kinetic modeling of phenolic compounds extraction from nutshells: influence of particle size, temperature, and solvent ratio. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-023-04993-1 DOI: https://doi.org/10.1007/s13399-023-04993-1

Fiestas JU, Jiménez ME and Lizárraga BZ (2014) Estudio experimental para el diseño y evaluación de un secador de bandejas móvil. Big Bang Faustiniano 3(3): 7-10.

Gallo M, Ferrara L, Calogero A, Montesano D and Naviglio D (2020) Relationships between food and diseases: What to know to ensure food safety. Food Research International 137: 109414. https://doi.org/10.1016/j.foodres.2020.109414 DOI: https://doi.org/10.1016/j.foodres.2020.109414

Garba ZN and Oviosa S (2019) The effect of different drying methods on the elemental and nutritional composition of Vernonia amygdalina (Bitter Leaf). Journal of Taibah University for Science 13(1): 396-401. https://doi.org/10.1080/16583655.2019.1582148 DOI: https://doi.org/10.1080/16583655.2019.1582148

Gil MI, Selma MV, Suslow T, Jacxsens L et al, Uyttendaele M and Allende A (2015) Pre-and postharvest preventive measures and intervention strategies to control microbial food safety hazards of fresh leafy vegetables. Critical Reviews in Food Science and Nutrition 55(4): 453-468. https://doi.org/10.1080/10408398.2012.657808 DOI: https://doi.org/10.1080/10408398.2012.657808

Gómez-Ramirez M, Mossos-Vivas N and Herrera-Ramírez R (2021) Desarrollo de una herramienta tecnológica facilitadora de buenas prácticas agrícolas en los pequeños agricultores del municipio de Argelia. Informador Técnico 85(2): 160-171. https://doi.org/10.23850/22565035.3642 DOI: https://doi.org/10.23850/22565035.3642

Gordanić S, Radanović D, Lukić M, Mrđan S, Mikić S, Prijić Ž and Marković T (2021) Influence of water stress prior to harvest on yield and essential oil content of pot grown lemon balm. Lekovite Sirovine 41: 54–57. https://doi.org/10.5937/leksir2141054g DOI: https://doi.org/10.5937/leksir2141054G

Kanatas P, Gazoulis I, Kakabouki I and Papastylianou P (2020) Aromatic plant Melissa officinalis extracts selectivity in various biomass crop and legume species. Agraarteadus 31(2): 167–172.

Kemp SE, Hollowood T and Hort J (2011) Sensory evaluation: a practical handbook. John Wiley & Sons, West Sussex. 208 p.

Levate LM, Costa WV, da Silva CA, Henriques SS and Quintão LJQ (2020) Effect of drying air temperature on drying kinetics and physicochemical characteristics of dried banana. Journal of Food Process Engineering 43(9): e13451. https://doi.org/10.1111/jfpe.13451 DOI: https://doi.org/10.1111/jfpe.13451

Łyczko J, Jałoszyński K, Surma M, Masztalerz K et al (2019) HS-SPME Analysis of true lavender (Lavandula angustifolia Mill.) leaves treated by various drying methods. Molecules 24: 764. https://doi.org/10.3390/molecules24040764 DOI: https://doi.org/10.3390/molecules24040764

Mukherjee PK (2019) Quality control and evaluation of herbal drugs: Evaluating natural products and traditional medicine. Elsevier, Cambridge. 762 p.

Németh-Zámboriné É, Seidler-Lozykowska K and Szabó K (2019) Effect of harvest date on yield and secondary compounds of lemon balm (Melissa officinalis L.). Journal of Applied Botany and Food Quality 92: 81-87. https://doi.org/10.5073/JABFQ.2019.092.011

Oliveira SM, Brandão TRS and Silva CLM (2016) Influence of drying processes and pretreatments on nutritional and bioactive characteristics of dried vegetables: A review. Food Engineering Reviews 8: 134-163. https://doi.org/10.1007/s12393-015-9124-0 DOI: https://doi.org/10.1007/s12393-015-9124-0

Oyinloye TM and Yoon WB (2020) Effect of freeze-drying on quality and grinding process of food produce: A review. Processes 8(3): 354. https://doi.org/10.3390/pr8030354 DOI: https://doi.org/10.3390/pr8030354

Padilla KAF, Granados-Conde C, León GM, Arrieta YP et al (2018) Evaluación de la influencia de la temperatura en procesos de secado. @limentech, Ciencia y Tecnología Alimentaria 16(1): 107-117.

Pasławska M, Sala K, Nawirska-Olszańska A, Stępień B et al (2020) Effect of different drying techniques on dehydration kinetics, physical properties, and chemical composition of lemon Thyme. Natural Product Communications 15(2). https://doi.org/10.1177/1934578X20904521 DOI: https://doi.org/10.1177/1934578X20904521

Passafiume R, Gugliuzza G, Gaglio R, Busetta G et al (2021) Aloe-based edible coating to maintain quality of fresh-cut italian pears (Pyrus communis L.) during cold storage. Horticulturae 7(12): 581. https://doi.org/10.3390/horticulturae7120581 DOI: https://doi.org/10.3390/horticulturae7120581

Petikirige J, Karim A and Millar G (2022) Effect of drying techniques on quality and sensory properties of tropical fruits. International Journal of Food Science & Technology 57(11): 6963–6979. https://doi.org/10.1111/ijfs.16043 DOI: https://doi.org/10.1111/ijfs.16043

Petrisor G, Motelica L, Craciun LN, Oprea OC et al (2022) Melissa officinalis: Composition, pharmacological effects and derived release systems-a review. International Journal of Molecular Sciences 23(7): 3591. https://doi.org/10.3390/ijms23073591 DOI: https://doi.org/10.3390/ijms23073591

Rudy S, Dziki D, Biernacka B, Krzykowski A et al (2020) Drying characteristics of Dracocephalum moldavica leaves: Drying kinetics and physicochemical properties. Processes 8(5): 509. https://doi.org/10.3390/pr8050509 DOI: https://doi.org/10.3390/pr8050509

Saint-Denis CY (2018) Consumer and sensory evaluation techniques: how to sense successful products. John Wiley & Sons, Hoboken. 208 p. DOI: https://doi.org/10.1002/9781119405559

Sarkar J, Ray A, Chakraborty B and Chakraborty U (2016) Antioxidative changes in Citrus reticulata L. induced by drought stress and its effect on root colonization by arbuscular mycorrhizal fungi. European Journal of Biological Research 6(1): 1-13. http://www.journals.tmkarpinski.com/index.php/ejbr/issue/view/23

Shamekhi-Amiri S, Gorji TB, Gorji-Bandpy M and Jahanshahi M (2018) Drying behaviour of lemon balm leaves in an indirect double-pass packed bed forced convection solar dryer system. Case Studies In Thermal Engineering 12: 677-686. https://doi.org/10.1016/j.csite.2018.08.007 DOI: https://doi.org/10.1016/j.csite.2018.08.007

Shamizi N, Yarnia M, Mohebalipour N, Faramarzi A and Ajalli J (2022) The effect of mycorrhizal species on the growth, essential oils, yield and morpho-physiological parameters of Lemon Balm (Melissa officinalis L.) under water-deficit conditions in Tabriz region. Plant Science Today 9(2): 228-235. https://doi.org/10.14719/pst.1338 DOI: https://doi.org/10.14719/pst.1338

Silverira LD, Duarte AL, Lima CA, Bezerra CD et al (2019) Effect of air temperature and velocity on drying kinetics and essential oil composition of Piper umbellatum L. leaves. Industrial Crops and Products 142: 111846. https://doi.org/10.1016/j.indcrop.2019.111846 DOI: https://doi.org/10.1016/j.indcrop.2019.111846

Singh-Ackbarali D and Maharaj R (2014) Sensory evaluation as a tool in determining acceptability of innovative products developed by undergraduate students in food science and technology at The University of Trinidad and Tobago. Journal of Curriculum and Teaching 3(1): 10-27. https://eric.ed.gov/?id=EJ1157866 DOI: https://doi.org/10.5430/jct.v3n1p10

Sridhar A, Ponnuchamy M, Kumar P et al (2021) Techniques and modeling of polyphenol extraction from food: a review. Environmental Chemistry Letters 19: 3409–3443. https://doi.org/10.1007/s10311-021-01217-8 DOI: https://doi.org/10.1007/s10311-021-01217-8

Sturm B and Hensel O (2017) Chapter 12 - Pigments and nutrients during vegetable drying processes, dried products storage, and their associated color changes. pp. 257-277. In Zhang M, Bhandari B and Fang Z. (eds.). Handbook of drying of vegetables and vegetable products. CRC Press, Boca Raton. 554 p.

Tang Y, Yu X, ZhangY, Lu X et al (2020) Sensory descriptive analysis of green tea: correlation with chemical components. pp. 012013. In: IOP Conference Series: Earth and Environmental Science. IOP Publishing. https://doi.org/10.1088/1755-1315/461/1/012013 DOI: https://doi.org/10.1088/1755-1315/461/1/012013

Tinebra I, Passafiume R, Scuderi D, Pirrone A et al (2022) Effects of tray-drying on the physicochemical, microbiological, proximate, and sensory properties of white- and red-fleshed loquat (Eriobotrya japonica Lindl.) Fruit. Agronomy 12(2): 540. https://doi.org/10.3390/agronomy12020540 DOI: https://doi.org/10.3390/agronomy12020540

Torki-Harchegani M, Ghanbarian D, Pirbalouti AG and Sadeghi M (2016) Dehydration behaviour, mathematical modelling, energy efficiency and essential oil yield of peppermint leaves undergoing microwave and hot air treatments. Renewable and Sustainable Energy Reviews 58: 407-418. DOI: https://doi.org/10.1016/j.rser.2015.12.078

Trujillo-Echeverria L, Lara Fiallos MV, de la Vega JCQ et al (2020) Technical-economic analisys of the solvent-method optimization of Origanum vulgare essential oil extraction based on technical and quality criteria. SN Applied Sciences 2(12): 2133. https://doi.org/10.1007/s42452-020-03955-w DOI: https://doi.org/10.1007/s42452-020-03955-w

Waheed K, Nawaz H, Hanif MA, Rehman R and Ogunwande IA (2019) Chapter 35: Lemon Balm. pp. 466- 47. In: Hanif MA, Kan MM, Nawaz H and Byrne HJ. Medicinal plants of South Asia: novel sources for drug discovery. Elsevier, Amsterdam. 735 p.

Wang Cong-ming, Nie Cong-ning et al (2022) Evaluation of sensory and safety quality characteristics of “high mountain tea”. Food Science & Nutrition 10(10): 3338-3354. https://doi.org/10.1002/fsn3.2923 DOI: https://doi.org/10.1002/fsn3.2923

How to Cite

APA

Trujillo-Echeverria, L., Pinanjota Guaytarilla, H. G. and Lara Fiallos, M. V. (2024). Effect of drying parameters on the physicochemical, microbiological, and sensory properties of lemon balm (Melissa officinalis L.). Revista Facultad Nacional de Agronomía Medellín, 77(2), 10751–10763. https://doi.org/10.15446/rfnam.v77n2.108992

ACM

[1]
Trujillo-Echeverria, L., Pinanjota Guaytarilla, H.G. and Lara Fiallos, M.V. 2024. Effect of drying parameters on the physicochemical, microbiological, and sensory properties of lemon balm (Melissa officinalis L.). Revista Facultad Nacional de Agronomía Medellín. 77, 2 (May 2024), 10751–10763. DOI:https://doi.org/10.15446/rfnam.v77n2.108992.

ACS

(1)
Trujillo-Echeverria, L.; Pinanjota Guaytarilla, H. G.; Lara Fiallos, M. V. Effect of drying parameters on the physicochemical, microbiological, and sensory properties of lemon balm (Melissa officinalis L.). Rev. Fac. Nac. Agron. Medellín 2024, 77, 10751-10763.

ABNT

TRUJILLO-ECHEVERRIA, L.; PINANJOTA GUAYTARILLA, H. G.; LARA FIALLOS, M. V. Effect of drying parameters on the physicochemical, microbiological, and sensory properties of lemon balm (Melissa officinalis L.). Revista Facultad Nacional de Agronomía Medellín, [S. l.], v. 77, n. 2, p. 10751–10763, 2024. DOI: 10.15446/rfnam.v77n2.108992. Disponível em: https://revistas.unal.edu.co/index.php/refame/article/view/108992. Acesso em: 22 jul. 2024.

Chicago

Trujillo-Echeverria, Lenin, Henry Gabriel Pinanjota Guaytarilla, and Marco Vinicio Lara Fiallos. 2024. “Effect of drying parameters on the physicochemical, microbiological, and sensory properties of lemon balm (Melissa officinalis L.)”. Revista Facultad Nacional De Agronomía Medellín 77 (2):10751-63. https://doi.org/10.15446/rfnam.v77n2.108992.

Harvard

Trujillo-Echeverria, L., Pinanjota Guaytarilla, H. G. and Lara Fiallos, M. V. (2024) “Effect of drying parameters on the physicochemical, microbiological, and sensory properties of lemon balm (Melissa officinalis L.)”, Revista Facultad Nacional de Agronomía Medellín, 77(2), pp. 10751–10763. doi: 10.15446/rfnam.v77n2.108992.

IEEE

[1]
L. Trujillo-Echeverria, H. G. Pinanjota Guaytarilla, and M. V. Lara Fiallos, “Effect of drying parameters on the physicochemical, microbiological, and sensory properties of lemon balm (Melissa officinalis L.)”, Rev. Fac. Nac. Agron. Medellín, vol. 77, no. 2, pp. 10751–10763, May 2024.

MLA

Trujillo-Echeverria, L., H. G. Pinanjota Guaytarilla, and M. V. Lara Fiallos. “Effect of drying parameters on the physicochemical, microbiological, and sensory properties of lemon balm (Melissa officinalis L.)”. Revista Facultad Nacional de Agronomía Medellín, vol. 77, no. 2, May 2024, pp. 10751-63, doi:10.15446/rfnam.v77n2.108992.

Turabian

Trujillo-Echeverria, Lenin, Henry Gabriel Pinanjota Guaytarilla, and Marco Vinicio Lara Fiallos. “Effect of drying parameters on the physicochemical, microbiological, and sensory properties of lemon balm (Melissa officinalis L.)”. Revista Facultad Nacional de Agronomía Medellín 77, no. 2 (May 1, 2024): 10751–10763. Accessed July 22, 2024. https://revistas.unal.edu.co/index.php/refame/article/view/108992.

Vancouver

1.
Trujillo-Echeverria L, Pinanjota Guaytarilla HG, Lara Fiallos MV. Effect of drying parameters on the physicochemical, microbiological, and sensory properties of lemon balm (Melissa officinalis L.). Rev. Fac. Nac. Agron. Medellín [Internet]. 2024 May 1 [cited 2024 Jul. 22];77(2):10751-63. Available from: https://revistas.unal.edu.co/index.php/refame/article/view/108992

Download Citation

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Article abstract page views

69

Downloads

Download data is not yet available.