Controlling foodborne pathogens in irrigation water: the effectiveness of zeolite modified with cetrimonium bromide
Control de patógenos transmitidos por los alimentos en agua de riego: la eficacia de la zeolita modificada con bromuro de cetrimonio
DOI:
https://doi.org/10.15446/rfnam.v77n1.107310Palabras clave:
Escherichia coli, Fragaria ananassa, Hexadecyltrimethylammonium bromide, irrigation system, Listeria monocytogenes, Salmonella sp (en)Escherichia coli, Fragaria ananassa, Hexadecyltrimethylammonium bromide, Irrigación, Listeria monocytogenes, Salmonella sp (es)
Descargas
Recurring foodborne outbreaks, attributed to Escherichia coli O157:H7, Salmonella sp., and Listeria monocytogenes, have identified irrigation water as a potential source of contamination, and creating the necessity for safe irrigation water in produce cultivation, as emphasized by the Food Safety Modernization Act (FSMA). In response to this imperative, this study explored the efficacy of surfactant-modified zeolite (SMZ) enhanced with Cetrimonium bromide (CTAB) as a sustainable water purification solution for surface water. The SMZ was assessed to have the capacity to filter contaminated water with high loads of foodborne pathogens. A laboratory study was conducted using a 100 g SMZ column. A liter of phosphate-buffered saline (PBS) was inoculated for each pathogen at 6 log CFU mL-1 concentrations. The study found that SMZ modified with CTAB at a concentration exceeding 20% by weight, indicating the ratio of CTAB to the total mass of the modifying solution, could eliminate >6 log CFU mL-1 of Escherichia coli O157:H7 and Listeria monocytogenes and >2 log of Salmonella sp. Subsequent field testing in strawberry farms demonstrated the system’s effectiveness, displaying significant bacterial reduction when contrasted with unfiltered pond water and sand filtration. The SMZ was able to filter more than 4 log CFU mL-1, from surface irrigation water spiked with a nonpathogenic Escherichia coli strain. The results indicate that the SMZ filtration approach holds promise as a remediation tool to control the risks of foodborne disease outbreaks associated with agricultural water.
Brotes alimentarios han sido atribuidos a Escherichia coli O157:H7, Salmonella sp., y Listeria monocytogenes, y se ha identificado el agua de riego como una posible fuente de contaminación. Esto realza la necesidad de agua de riego segura en productos hortofrutícolas, como lo enfatiza la Ley de Modernización de la Seguridad Alimentaria (FSMA). En respuesta a este imperativo, este estudio exploró la eficacia de la zeolita modificada con surfactante (SMZ) modificada con bromuro de cetrimonio (CTAB) como una solución para la purificación de agua superficial. Se determinó que el SMZ tiene la capacidad de filtrar agua contaminada con altas cargas de patógenos transmitidos por alimentos. Se realizó un estudio de laboratorio utilizando una columna de SMZ de 100 g. Para cada patógeno, se inoculó un litro de solución salina tamponada con fosfato (PBS) a concentraciones de 6 log UFC mL-1. Los resultados revelaron que SMZ, con una concentración de CTAB al 20% por peso total de la solución modificadora, podría eliminar >6 log UFC mL-1 de Escherichia coli O157:H7 y Listeria monocytogenes y >2 log UFC mL-1 de Salmonella sp. Las pruebas de campo en granjas de fresas demostraron la efectividad del sistema, mostrando una reducción bacteriana en comparación con el agua de estanque sin filtrar o filtrada con arena. El SMZ pudo filtrar más de 4 log UFC mL-1 del agua de riego superficial inoculada con una cepa no patogénica de Escherichia coli. Los resultados sugieren que la filtración SMZ podría controlar riesgos de brotes por agua agrícola.
Referencias
Aarnisalo K, Lundén J, Korkeala H and Wirtanen G (2007) Susceptibility of Listeria monocytogenes strains to disinfectants and chlorinated alkaline cleaners at cold temperatures. LWT - Food Science and Technology 40: 1041–1048. https://doi.org/10.1016/j.lwt.2006.07.009 DOI: https://doi.org/10.1016/j.lwt.2006.07.009
AOAC International (1998) AOAC Official method 991.14. Coliform and Escherichia coli counts in foods. Official Methods of Analysis.
Barton Behravesh C, Mody RK, Jungk J et al (2011) 2008 Outbreak of Salmonella Saintpaul infections associated with raw produce. New England Journal of Medicine 364: 918–927. https://doi.org/10.1056/NEJMOA1005741 DOI: https://doi.org/10.1056/NEJMoa1005741
Bruchhaus M and Hinson R (2005) An assessment of consumer preferences for strawberry products. Southern Agricultural Economics Association, 2005 Annual Meeting, February 5-9, 2005, Little Rock, Arkansas
CDC - Centers for Disease Control and Prevention (2006) Multistate outbreak of E. coli O157:H7 infections linked to fresh spinach (FINAL UPDATE)
Eng S-K, Pusparajah P, Ab Mutalib N-S et al (2015) Salmonella: A review on pathogenesis, epidemiology and antibiotic resistance. Frontiers in Life Science 8: 284–293. https://doi.org/10.1080/21553769.2015.1051243 DOI: https://doi.org/10.1080/21553769.2015.1051243
Fontenot K, Johnson C, Morgan A and Lewis Ivey M (2014) Vegetable gardening tips. Growing Information for the Home Gardener Series. Strawberries. 3363.
Gerba CP (2015) Quaternary ammonium biocides: Efficacy in application. Applied and Environmental Microbiology 81: 464–469. https://doi.org/10.1128/AEM.02633-14 DOI: https://doi.org/10.1128/AEM.02633-14
Guerra R, Lima E, Viniegra M et al (2012) Growth of Escherichia coli and Salmonella typhi inhibited by fractal silver nanoparticles supported on zeolites. Microporous and Mesoporous Materials 147: 267–273. https://doi.org/10.1016/j.micromeso.2011.06.031 DOI: https://doi.org/10.1016/j.micromeso.2011.06.031
Havelaar AH, Kirk MD, Torgerson PR et al (2015) World Health Organization global estimates and regional comparisons of the burden of foodborne disease in 2010. PLoS Medicine 12: e1001923. https://doi.org/10.1371/JOURNAL.PMED.1001923 DOI: https://doi.org/10.1371/journal.pmed.1001923
Ingram DT, Callahan MT, Ferguson S et al (2012) Use of zero-valent iron biosand filters to reduce Escherichia coli O157:H12 in irrigation water applied to spinach plants in a field setting. Journal Applied Microbiology 112: 551–560. https://doi.org/10.1111/j.1365-2672.2011.05217.x DOI: https://doi.org/10.1111/j.1365-2672.2011.05217.x
Li Y, McCarthy DT and Deletic A (2016) Escherichia coli removal in copper-zeolite-integrated stormwater biofilters: Effect of vegetation, operational time, intermittent drying weather. Ecological Engineering 90: 234–243. https://doi.org/10.1016/j.ecoleng.2016.01.066 DOI: https://doi.org/10.1016/j.ecoleng.2016.01.066
Margeta K, Logar NZ, Šiljeg M and Farkas A (2013) Natural zeolites in water treatment – how effective is their use. In: Elshorbagy W, Chowdhury RK (eds) Water treatment. IntechOpen, Rijeka, p Ch. 5 DOI: https://doi.org/10.5772/50738
Mereghetti L, Quentin R, Marquet-Van Der Mee N and Audurier A (2000) Low sensitivity of Listeria monocytogenes to quaternary ammonium compounds. Applied and Environmental Microbiology 66: 5083–5086. https://doi.org/10.1128/AEM.66.11.5083-5086.2000 DOI: https://doi.org/10.1128/AEM.66.11.5083-5086.2000
Park E-J, Alexander E, Taylor GA et al (2009) The decontaminative effects of acidic electrolyzed water for Escherichia coli O157:H7, Salmonella typhimurium, and Listeria monocytogenes on green onions and tomatoes with differing organic demands. Food Microbiology 26: 386–390. https://doi.org/10.1016/j.fm.2008.10.013 DOI: https://doi.org/10.1016/j.fm.2008.10.013
Perić J, Trgo M and Vukojević Medvidović N (2004) Removal of zinc, copper and lead by natural zeolit —a comparison of adsorption isotherms. Water Research 38: 1893–1899. https://doi.org/10.1016/j.watres.2003.12.035 DOI: https://doi.org/10.1016/j.watres.2003.12.035
Schulze-Makuch D, Bowman RS, Pillai SD and Guan H (2003) Field evaluation of the effectiveness of surfactant modified zeolite and iron-oxide-coated sand for removing viruses and bacteria from ground water. Groundwater Monitoring & Remediation 23: 68–74. https://doi.org/10.1111/j.1745-6592.2003.tb00696.x DOI: https://doi.org/10.1111/j.1745-6592.2003.tb00696.x
Söderström A, Österberg P, Lindqvist A et al (2008) A Large Escherichia coli O157 outbreak in sweden associated with locally produced lettuce. Foodborne Pathogens and Disease 5: 339–349. https://doi.org/10.1089/fpd.2007.0065 DOI: https://doi.org/10.1089/fpd.2007.0065
Steele M and Odumeru J (2004) Irrigation water as source of foodborne pathogens on fruit and vegetables. Journal of Food Protection 67: 2839–2849. https://doi.org/10.4315/0362-028X-67.12.2839 DOI: https://doi.org/10.4315/0362-028X-67.12.2839
Suslow TV, Oria MP, Beuchat LR et al (2003) Production practices as risk factors in microbial food safety of fresh and fresh-cut produce. Comprehensive Reviews in Food Science and Food Safety 2: 38–77. https://doi.org/10.1111/j.1541-4337.2003.tb00030.x DOI: https://doi.org/10.1111/j.1541-4337.2003.tb00030.x
Tandukar M, Oh S, Tezel U et al (2013) Long-term exposure to benzalkonium chloride disinfectants results in change of microbial community structure and increased antimicrobial resistance. Environmental Science and Technology 47: 9730–9738. https://doi.org/10.1021/es401507k DOI: https://doi.org/10.1021/es401507k
Tezel U and Pavlostathis SG (2015) Quaternary ammonium disinfectants: microbial adaptation, degradation and ecology. Current Opinion in Biotechnology 33: 296–304. https://doi.org/10.1016/j.copbio.2015.03.018 DOI: https://doi.org/10.1016/j.copbio.2015.03.018
Tran HN, Viet P Van and Chao H-P (2018) Surfactant modified zeolite as amphiphilic and dual-electronic adsorbent for removal of cationic and oxyanionic metal ions and organic compounds. Ecotoxicology and Environmental Safety 147: 55–63. https://doi.org/10.1016/j.ecoenv.2017.08.027 DOI: https://doi.org/10.1016/j.ecoenv.2017.08.027
Ukuku DO and Fett WF (2002) Relationship of cell surface charge and hydrophobicity to strength of attachment of bacteria to Cantaloupe Rind†. Journal of Food Protection 65: 1093–1099. https://doi.org/10.4315/0362-028X-65.7.1093 DOI: https://doi.org/10.4315/0362-028X-65.7.1093
Wakweya B and Jifar WW (2023) In vitro Evaluation of antibacterial activity of synthetic zeolite supported AgZno nanoparticle against a selected group of bacteria. Journal of Experimental Pharmacology 15: 139–147. https://doi.org/10.2147/JEP.S396118 DOI: https://doi.org/10.2147/JEP.S396118
Wang S and Peng Y (2010) Natural zeolites as effective adsorbents in water and wastewater treatment. Chemical Engineering Journal 156: 11–24. https://doi.org/10.1016/j.cej.2009.10.029 DOI: https://doi.org/10.1016/j.cej.2009.10.029
Weller DL, Kovac J, Roof S et al (2017) Survival of Escherichia coli on Lettuce under field conditions encountered in the Northeastern United States. Journal of Food Protection 80: 1214–1221. https://doi.org/10.4315/0362-028X.JFP-16-419 DOI: https://doi.org/10.4315/0362-028X.JFP-16-419
Wessels S and Ingmer H (2013) Modes of action of three disinfectant active substances: A review. Regulatory Toxicology and Pharmacology 67: 456–467. https://doi.org/10.1016/j.yrtph.2013.09.006 DOI: https://doi.org/10.1016/j.yrtph.2013.09.006
Zampino D, Ferreri T, Puglisi C et al (2011) PVC silver zeolite composites with antimicrobial properties. Journal of Materials Science 46: 6734–6743. https://doi.org/10.1007/s10853-011-5629-y DOI: https://doi.org/10.1007/s10853-011-5629-y
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
Licencia
Derechos de autor 2024 Revista Facultad Nacional de Agronomia Medellín
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
La Revista permite al autor(es) mantener los derechos de explotación (copyright) de sus artículos sin restricciones. El(os) autor(es) acepta(n) la distribución de sus artículos en la web y en soporte papel (300 ejemplares por número), bajo acceso abierto a nivel local, regional e internacional; la inclusión y difusión del texto completo, a través del Portal de Revistas y Repositorio Institucional de la Universidad Nacional de Colombia; y en todas las bases de datos especializadas que la Revista considere pertinentes para su indexación, con el fin de proporcionarle visibilidad y posicionamiento al artículo. Todos los artículos deben cumplir la legislación colombiana e internacional, relacionada con derechos de autor.
Compromisos del autor
El autor(es) se compromete(n) a ceder los derechos de impresión y reimpresión del material publicado a la Revista Facultad Nacional de Agronomía Medellín y cualquier cita a los artículos editados en la Revista se deberá hacer si se adiciona el crédito respectivo. En caso de duplicación del contenido de la Revista o su publicación parcial o total en otro idioma, se deberá contar con el permiso escrito del Director.
Responsabilidad de los contenidos
La Facultad de Ciencias Agrarias y la Revista no se responsabilizan o solidarizan, necesariamente, con los conceptos emitidos en los artículos publicados, cuya responsabilidad será en su totalidad del autor o los autores.