Soil quality indicators related to the deterioration of Kikuyu grass Cenchrus clandestinus (Hochst. ex Chiov.) Morrone
Indicadores de calidad del suelo relacionados con el deterioro del pasto kikuyo Cenchrus clandestinus (Hochst. ex Chiov.) Morrone
DOI:
https://doi.org/10.15446/rfnam.v77n3.109829Palabras clave:
Degraded pastures, High Andean tropics, Principal component analysis, Soil chemical properties, Soil physical properties, Soil quality index (en)Pasturas degradadas, Trópico alto andino, Análisis de componentes principales, Propiedades químicas del suelo, Propiedades físicas del suelo, índice de calidad del suelo (es)
Descargas
Inadequate grassland management has resulted in the degradation of extensive areas, loss of productivity and sustainability of many of them, reflecting a common reality among livestock farmers in Colombia. Therefore, at the Paysandú Agricultural Station of the Universidad Nacional de Colombia, located in the Santa Elena township of the city of Medellín, a study was carried out to determine a soil quality index (SQI) by evaluating the physical and chemical indicators that were most related to the deterioration and dry matter production of kikuyu grass (Cenchrus clandestinus). A minimum data set (MDS) was established for the most sensitive indicators, selected by principal component analysis (PCA), and a nonlinear scoring function was used to obtain the SQI. Statistical differences were found between all the treatments in relation to dry matter production (P<0.05: 1.91x10-32). The most sensitive indicators were bulk density BD > total porosity TP > macropores MAC > micropores MIC > penetration resistance PR > effective cation exchange capacity ECEC > pH. As a result, the following formula was obtained: SQI = (0.225×BD) + (0.224×TP) + (0.220×MAC) + (0.218×MIC) + (0.113×PR) + (0.0879×ECEC) + (0.0877×pH). This index should be tested in kikuyu grass-dominated pastures located in the Colombian high tropics. The baseline is critical at values > 0.58 Mg m-3 for BD and > 2.25 MPa for PR. In addition, the optimum pH range for kikuyu grass development was between 5.4 and 6.4.
El manejo inadecuado de los pastizales ha provocado la degradación de extensas áreas, la pérdida de productividad y sostenibilidad de muchas de ellas, reflejando una realidad común entre los ganaderos de Colombia. Por ello, en la Estación Agraria Paysandú de la Universidad Nacional de Colombia, ubicada en el corregimiento de Santa Elena de la ciudad de Medellín, se realizó una investigación para determinar un índice de calidad del suelo (SQI) mediante la evaluación de los indicadores físicos y químicos más relacionados con el deterioro y producción de materia seca del pasto kikuyo (Cenchrus clandestinus). Se estableció un conjunto mínimo de datos (MDS) para los indicadores más sensibles, elegidos mediante el análisis de componentes principales PCA, y se utilizó una función de puntuación no lineal para obtener el SQI. Se encontraron diferencias estadísticas entre todos los tratamientos y la producción de materia seca (P<0,05: 1,91x10-32). Los indicadores más sensibles fueron: densidad aparente DR > porosidad total TP > macroporos MAC > microporos MIC > resistencia a la penetración PR > capacidad de intercambio catiónico efectiva ECEC > pH. Como resultado, se obtuvo el siguiente SQI = (0,225×BD) + (0,224×TP) + (0,220×MAC) + (0,218×MIC) + (0,113×PR) + (0,0879×ECEC) + (0,0877×pH). Se sugiere probar el índice en praderas dominadas por pasto kikuyo ubicadas en el trópico alto colombiano. La línea de base es crítica a valores > 0,58 Mg m-3 para BD y > 2,25 MPa para PR. Además, el intervalo de pH óptimo para el desarrollo del pasto kikuyo se situó entre 5,4 y 6,4.
Referencias
Amorim H, Ashworth A, Moore P et al (2020) Soil quality indices following long-term conservation pasture management practices. Agriculture, Ecosystems and Environment 301: 107060. https://doi.org/10.1016/j.agee.2020.107060
Barbosa L, Magalhães P, Bordonal R et al (2019) Soil physical quality associated with tillage practices during sugarcane planting in south-central Brazil. Soil and Tillage Research 195: 104383. https://doi.org/10.1016/j.still.2019.104383
Blanco-Sepúlveda R, Gómez-Moreno ML and Lima F (2024) An approach to the key soil physical properties for assessing soil compaction due to livestock grazing in Mediterranean Mountain Areas. Sustainability 16(10): 4279. https://doi.org/10.3390/su16104279
Bünemann E, Bongiorno G, Bai Z et al (2018) Soil quality: A critical review. Soil Biology and Biochemistry 120: 105-125. https://doi.org/10.1016/j.soilbio.2018.01.030
Chaudhry H, Vasava H, Chen S et al (2024) Evaluating the soil quality index using three methods to assess soil fertility. Sensors 24(864): 1-15. https://doi.org/10.3390/s24030864
Colombi T and Keller T (2019) Developing strategies to recover crop productivity after soil compaction: A plant eco-physiological perspective. Soil and Tillage Research 191: 156-161. https://doi.org/10.1016/j.still.2019.04.008
Delmelle P, Opfergelt S, Cornelis J and Ping C-L (2015) Chapter 72 - Volcanic Soils. The Encyclopedia of Volcanoes (Second edition), pp 1253-1264. In: The Encyclopedia of Volcanoes. https://doi.org/10.1016/B978-0-12-385938-9.00072-9
Gómez A, Silva A, Salazar J et al (2014) Producción de materia seca y calidad del pasto kikuyo P. clandestinum en diferentes niveles de fertilización nitrogenada y en asocio con aliso Alnus acuminata en el trópico alto colombiano. En: Anais do 1o Simpósio Internacional de Arborização de Pastagens em Regiões Subtropicais. https://ainfo.cnptia.embrapa.br/digital/bitstream/item/123660/1/p32-41-Doc.-268-Anais.pdf
Hazelton P and Murphy B (2016) Interpreting soil test results: what do all the numbers mean? Third edition. CSIRO Publishing. Australia. http://doi.org/10.1071/9781486303977
Hewitt A, Balks M and Lowe D (2021) The soils of Aotearoa New Zealand. World Soils Book Series. USA, 332 p. https://doi.org/10.1007/978-3-030-64763-6
Joimel S, Schwartz C, Hedde M et al (2017) Urban and industrial land uses have a higher soil biological quality than expected from physicochemical quality. Science of The Total Environment 584-585: 614-621. https://doi.org/10.1016/j.scitotenv.2017.01.086
Keller T, Colombi T, Ruiz S et al (2017) Long-term soil structure observatory for monitoring post-compaction evolution of soil structure. Vadose Zone Journal 16(4): 1-13. https://doi.org/10.2136/vzj2016.11.0118
Koureh H, Asgarzadeh H, Mosaddeghi M et al (2020) Critical values of soil physical quality indicators based on vegetative growth characteristics of spring wheat (Triticum aestivum L.). Journal of Soil Science and Plant Nutrition 20(2): 493-506. https://doi.org/10.1007/s42729-019-00134-8
Lal R (2020) Soil organic matter content and crop yield. Journal of Soil and Water Conservation 75(2): 27A-32A. https://doi.org/10.2489/jswc.75.2.27A
Läuchli A and Grattan S (2017) Plant stress under non-optimal soil pH. pp 201-216. In: Shabala S (eds.). Plant stress physiology. Second edition. Ediciones S. Shabala. USA 362 p. https://doi.org/10.1079/9781780647296.0201
Milazzo F, Francksen R, Abdalla M et al (2023) An overview of permanent grassland grazing management practices and the impacts on principal soil quality indicators. Agronomy 13(5): 1-16. https://doi.org/10.3390/agronomy13051366
Pérez N, Jaramillo D, Ruiz O et al (2017) Caracterización de un Andisol de la cuenca alta de la quebrada Santa Elena, oriente antioqueno, Colombia. Revista de la Facultad de Ciencias 6(1): 24-38. https://doi.org/10.15446/rev.fac.cienc.v6n1.60628
Rabot E, Wiesmeier M, Schlüter S et al (2018) Soil structure as an indicator of soil functions: A review. Geoderma, 314: 122-137. https://doi.org/10.1016/j.geoderma.2017.11.009
Rodelo-Torrente S, Torregroza-Espinosa A, Moreno M et al (2022) Soil fertility in agricultural production units of tropical áreas. Global Journal of Environmental Science and Management 8(3): 403-418.
Sharma K, Grace J, Chandrika S et al (2014) Effects of soil management practices on key soil quality indicators and indices in pearl millet (Pennisetum americanum (L.) Leeke)–based system in hot semi-arid inceptisols. Communications in Soil Science and Plant Analysis 45(6): 785-809. https://doi.org/10.1080/00103624.2013.867048
Siatwiinda S, Ros G, Yerokun O et al (2024) Options to reduce ranges in critical soil nutrient levels used in fertilizer recommendations by accounting for site conditions and methodology: A review. Agronomy for sustainable development 44 (9): 1-22. https://doi.org/10.1007/s13593-023-00943-3
Soil Survey Staff (2022) Keys to soil taxonomy, 13th edition. USDANatural Resources Conservation Service. https://www.nrcs.usda.gov/sites/default/files/2022-09/Keys-to-Soil-Taxonomy.pdf
Swanepoel P, du Preez C, Botha P et al (2014) Soil quality characteristics of kikuyu-ryegrass pastures in South Africa. Geoderma 232-234: 589-599. https://doi.org/10.1016/j.geoderma.2014.06.018
USDA, Agricultural Research Service, National Plant Germplasm System (2024) Germplasm resources information network (GRIN Taxonomy). National Germplasm Resources Laboratory, Beltsville, Maryland. https://npgsweb.ars-grin.gov/gringlobal/taxon/taxonomydetail?id=464260
Valle S and Carrasco J (2018) Soil quality indicator selection in Chilean volcanic soils formed under temperate and humid conditions. Catena 162: 386-395. https://doi.org/10.1016/j.catena.2017.10.024
Villalobos-Villalobos L and WingChing-Jones R (2023) Forage biomass estimated with a pre-calibrated equation of a rising platemeter in pastures grown in tropical conditions. Grasses 2(2):127-141. https://doi.org/10.3390/grasses2020011
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
Licencia
Derechos de autor 2024 Revista Facultad Nacional de Agronomia Medellín
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
La Revista permite al autor(es) mantener los derechos de explotación (copyright) de sus artículos sin restricciones. El(os) autor(es) acepta(n) la distribución de sus artículos en la web y en soporte papel (300 ejemplares por número), bajo acceso abierto a nivel local, regional e internacional; la inclusión y difusión del texto completo, a través del Portal de Revistas y Repositorio Institucional de la Universidad Nacional de Colombia; y en todas las bases de datos especializadas que la Revista considere pertinentes para su indexación, con el fin de proporcionarle visibilidad y posicionamiento al artículo. Todos los artículos deben cumplir la legislación colombiana e internacional, relacionada con derechos de autor.
Compromisos del autor
El autor(es) se compromete(n) a ceder los derechos de impresión y reimpresión del material publicado a la Revista Facultad Nacional de Agronomía Medellín y cualquier cita a los artículos editados en la Revista se deberá hacer si se adiciona el crédito respectivo. En caso de duplicación del contenido de la Revista o su publicación parcial o total en otro idioma, se deberá contar con el permiso escrito del Director.
Responsabilidad de los contenidos
La Facultad de Ciencias Agrarias y la Revista no se responsabilizan o solidarizan, necesariamente, con los conceptos emitidos en los artículos publicados, cuya responsabilidad será en su totalidad del autor o los autores.