Publicado

2024-09-01

Leaf spectrum analysis of three tropical timber species: Diomate (Astronium graveolens), Choibá (Dipteryx oleifera), and Algarrobo (Hymenaea courbaril)

Análisis del espectro foliar de tres especies tropicales maderables: Diomate (Astronium graveolens), Choibá (Dipteryx oleifera), y Algarrobo (Hymenaea courbaril)

DOI:

https://doi.org/10.15446/rfnam.v77n3.112180

Palabras clave:

Classification, Leaves, Separability, Spectral signature, Spectroradiometry, Tropical forest (en)
Clasificación, Hojas, Separabilidad, Firma espectral, Espectrorradiometría, Bosque tropical (es)

Descargas

Autores/as

This study analyzed the leaf spectral response of three native timber forest species in the tropical dry forest: Diomate (Astronium graveolens Jacq.), Choibá (Dipteryx oleifera Benth.), and Algarrobo (Hymenaea courbaril L.). The study was conducted at the León Morales Soto Arboretum and Palmetum, at the Universidad Nacional de Colombia in Medellín, Antioquia, Colombia. Spectral data from the leaves were collected in situ using the portable spectroradiometer ASD FieldSpec HandHeld-2, which operates with a spectral resolution of 1 nm (resampled to 10 nm) and covers a spectral range between 325 and 1,075 nm (limited to 400-900 nm). Based on the measurements, the behavior and spectral variability of the species were evaluated. One-factor Analysis of Variance and Mann Whitney-Wilcoxon U-test were implemented in reflectance spectra to select the optimal narrow bands for species discrimination. The classification capacity of the selected narrow bands was assessed using the K-nearest neighbors’ algorithm. It was found that A. graveolens and H. courbaril exhibited spectral signatures typical of healthy vegetation, while D. oleifera showed spectral changes during the early stages of senescence. Regarding spectral separability, 23 narrow bands in the visible region and near-infrared region were identified as optimal for distinguishing the plant species. The supervised classification algorithm applied to these 23 narrow bands achieved an overall accuracy of 95.8%. In conclusion, these findings provide valuable insights into the spectral response of important tropical species and contribute to their conservation efforts by enhancing understanding of their unique spectral characteristics in diverse and heterogeneous ecosystems like tropical forests.

Esta investigación analizó la respuesta espectral foliar de tres especies forestales maderables nativas del bosque seco tropical, Diomate (Astronium graveolens Jacq.), Choibá (Dipteryx oleifera Benth.) y Algarrobo (Hymenaea courbaril L.). El estudio se efectuó en el Arboretum y Palmetum León Morales Soto de la Universidad Nacional de Colombia, sede Medellín, Antioquia, Colombia. Los datos espectrales de las hojas se colectaron in situ con el espectrorradiómetro portátil ASD FieldSpec HandHeld-2, que trabaja con una resolución espectral de 1 nm (remuestreada a 10 nm) y un rango espectral entre 325 y 1.075 nm (acotado entre 400 y 900 nm). A partir de las mediciones, se evaluó el comportamiento y la variabilidad espectral de las especies. Se implementó el Análisis de Varianza de un factor y la prueba U de Mann – Whitney – Wilcoxon en los espectros de reflectancia con el fin de seleccionar las bandas estrechas óptimas para discriminar las especies. Se evaluó la capacidad de clasificación de las especies en las bandas estrechas seleccionadas, utilizando el algoritmo de los K vecinos más cercanos. Encontrando que A. graveolens e H. courbaril presentaron firmas espectrales típicas de la vegetación saludable y D. oleifera evidenció cambios espectrales en el período inicial de la senescencia. Respecto a la separabilidad espectral, se encontraron 23 bandas estrechas en la región visible e infrarrojo cercano óptimas para diferenciar las especies vegetales. El algoritmo de clasificación supervisada aplicado en las 23 bandas estrechas, tuvo una precisión general del 95,8%. En conclusión, estos hallazgos proporcionan valiosos conocimientos sobre la respuesta espectral de importantes especies tropicales y contribuyen a sus esfuerzos de conservación al mejorar la comprensión de sus características espectrales únicas en ecosistemas diversos y heterogéneos como el bosque tropical.

Referencias

Aggarwal S (2004) Earth resources satellites. pp 39–65. In: Sivakumar MVK, Roy PS, Harmsen K and Saha SK. (eds.). Satellite remote sensing and GIS applications in agricultural meteorology. World Meteorological Organization, Dehra Dun. 44 p.

Amat J (2016) Comparación entre Regresión Logística, Linear Discriminant Analysis (LDA), Quadratic Discriminant Analysis (QDA) y K-Nearest-Neighbors. In: RPubs. https://rpubs.com/Joaquin_AR/236130

Bachman S (2023) Hymenaea courbaril.In: IUCN - Red list of threatened species. https://www.iucnredlist.org/es/species/19891869/68101847

Cárdenas D and Salinas R (2007) Libro rojo de plantas de Colombia. SINCHI - Instituto Amazónico de Investigaciones Científicas, Bogotá. 75-78 p. https://sinchi.org.co/files/publicaciones/publicaciones/pdf/LR_MADERABLES.pdf

Castillo R, Contreras D, Freer J et al (2008) Supervised pattern recognition techniques for classification of Eucalyptus species from leaves NIR spectra. Journal of the Chilean Chemical Society 53: 1709–1713. https://doi.org/10.4067/S0717-97072008000400016

Castro-Esau KL, Sánchez-Azofeita, Rivard B et al (2006) Variability in leaf optical properties of mesoamerican trees and the potential for species classification. American Journal of Botany 93: 517–530. https://doi.org/10.3732/ajb.93.4.517

Clark ML and Roberts DA (2012) Species-level differences in hyperspectral metrics among tropical rainforest trees as determined by a tree-based classifier. Remote Sensing 4: 1820–1855. https://doi.org/10.3390/rs4061820

Clark ML, Roberts DA and Clark DB (2005) Hyperspectral discrimination of tropical rain forest tree species at leaf to crown scales. Remote Sensing of Environment 96: 375 – 398. https://doi.org/10.1016/j.rse.2005.03.009

Cogollo A, Castrillón J and Vélez L (2004) Manejo in situ y ex situ del Almendro (Dipteryx oleifera Benth) como base para un modelo de uso sostenible de productos vegetales no maderables en la región del Bajo Cauca antioqueño. Jardín Botánico de Medellín Joaquín Antonio Uribe, Medellín. 11 p.

Cover T and Hart P (1967) Nearest neighbor pattern classification. IEEE Transactions on Information Theory 13: 21–27. https://doi.org/10.1109/TIT.1967.1053964

Féret JB and Asner GP (2011) Spectroscopic classification of tropical forest species using radiative transfer modeling. Remote Sensing of Environment 115: 2415–2422. https://doi.org/10.1016/j.rse.2011.05.004

Ferreira MP, Zortea M, Zanotta DC et al (2016) Mapping tree species in tropical seasonal semi-deciduous forests with hyperspectral and multispectral data. Remote Sensing of Environment 179: 66–78. https://doi.org/10.1016/j.rse.2016.03.021

Gómez M and Toro J (2008) Manejo de las semillas y la propagación de diez especies forestales del bosque seco tropical. First edition. CORANTIOQUIA - Corporación Autónoma Regional del Centro de Antioquia, Medellín. 5-43 p. http://hdl.handle.net/20.500.12324/1106

IDEAM - Instituto de Hidrología, Meteorología y Estudios Ambientales de Colombia (2010) Promedios climatológicos 1981-210. In: Tiempo y Clima. http://www.ideam.gov.co/web/tiempo-y-clima/clima

Karadağ K, Tenekeci ME, Taşaltın R and Bilgili A (2020) Detection of pepper fusarium disease using machine learning algorithms based on spectral reflectance. Sustainable Computing Informatics and Systems 28: 1-8. https://doi.org/10.1016/j.suscom.2019.01.001

Kumar A, Manjunath K, Meenakshi et al (2013) Field hyperspectral data analysis for discriminating spectral behavior of tea plantations under various management practices. International Journal of Applied Earth Observation and Geoinformation 23: 352–359. https://doi.org/10.1016/j.jag.2012.10.006

Lu J, Ehsani R, Shi Y et al (2017) Field detection of anthracnose crown rot in strawberry using spectroscopy technology. Computers and Electronics in Agriculture 135: 289–299. https://doi.org/10.1016/j.compag.2017.01.017

Machuca K, Martínez E and Samain M (2022) Astronium graveolens. In: IUCN - Red List of Threatened Species. https://www.iucnredlist.org/es/species/61530992/61531208

Maxwell AE, Warner TA and Fang F (2018) Implementation of machine-learning classification in remote sensing: An applied review. International Journal of Remote Sensing 39: 2784–2817. https://doi.org/10.1080/01431161.2018.1433343

Miyoshi G, Imai N, Tommaselli AM and Honkavaara E (2020) Spectral differences of tree species belonging to Atlantic forest obtained from UAV hyperspectral images. Remote Sensing and Spatial Information Sciences 49–54. https://doi.org/10.1109/LAGIRS48042.2020.9165616

Nalepa J (2021) Recent advances in multi-and hyperspectral image analysis. Sensors 21: 1-7. https://doi.org/10.3390/s21186002

O’Shaughnessy SA and Rush C (2014) Precision agriculture: irrigation. Encyclopedia of Agriculture and Food Systems 4: 521–535. https://doi.org/10.1016/B978-0-444-52512-3.00235-7

Papeş M, Tupayachi R, Martinez P et al (2013) Seasonal variation in spectral signatures of five genera of rainforest trees. Journal of Selected Topics in Applied Earth Observations and Remote Sensing 6: 339–350. https://doi.org/10.1109/JSTARS.2012.2228468

Prasad K and Gnanappazham L (2014) Species discrimination of mangroves using derivative spectral analysis. Remote Sensing and Spatial Information Sciences 2: 45–52. https://doi.org/10.5194/isprsannals-ii-8-45-2014

Rasaiah BA, Jones SD, Bellman C and Malthus TJ (2014) Critical metadata for spectroscopy field campaigns. Remote Sensing 6: 3662-3680. https://doi.org/10.3390/rs6053662

Thenkabail P, Enclona E, Ashton M and Van Der Meer B (2004) Accuracy assessments of hyperspectral waveband performance for vegetation analysis applications. Remote Sensing of Environment Journal 91: 354–376. https://doi.org/10.1016/j.rse.2004.03.013

Triola M (2009) Estadística. Tenth edition. Pearson Educación, México. 634–673 p.

Yue S and Wang C (2002) The influence of serial correlation on the Mann–Whitney test for detecting a shift in median. Advances in Water Resources 25: 325–333. https://doi.org/10.1016/S0309-1708(01)00049-5

Zulfa AW, Norizah K, Hamdan O et al (2020) Discriminating tree species from the relationship between spectral reflectance and chlorophyll contents of mangrove forest in Malaysia. Ecological Indicators 111: 1-9. https://doi.org/10.1016/j.ecolind.2019.106024

Cómo citar

APA

Alzate Marin, E. J., Toro Restrepo, L. J. y Suárez Gómez, J. A. (2024). Leaf spectrum analysis of three tropical timber species: Diomate (Astronium graveolens), Choibá (Dipteryx oleifera), and Algarrobo (Hymenaea courbaril). Revista Facultad Nacional de Agronomía Medellín, 77(3), 10907–10919. https://doi.org/10.15446/rfnam.v77n3.112180

ACM

[1]
Alzate Marin, E.J., Toro Restrepo, L.J. y Suárez Gómez, J.A. 2024. Leaf spectrum analysis of three tropical timber species: Diomate (Astronium graveolens), Choibá (Dipteryx oleifera), and Algarrobo (Hymenaea courbaril). Revista Facultad Nacional de Agronomía Medellín. 77, 3 (sep. 2024), 10907–10919. DOI:https://doi.org/10.15446/rfnam.v77n3.112180.

ACS

(1)
Alzate Marin, E. J.; Toro Restrepo, L. J.; Suárez Gómez, J. A. Leaf spectrum analysis of three tropical timber species: Diomate (Astronium graveolens), Choibá (Dipteryx oleifera), and Algarrobo (Hymenaea courbaril). Rev. Fac. Nac. Agron. Medellín 2024, 77, 10907-10919.

ABNT

ALZATE MARIN, E. J.; TORO RESTREPO, L. J.; SUÁREZ GÓMEZ, J. A. Leaf spectrum analysis of three tropical timber species: Diomate (Astronium graveolens), Choibá (Dipteryx oleifera), and Algarrobo (Hymenaea courbaril). Revista Facultad Nacional de Agronomía Medellín, [S. l.], v. 77, n. 3, p. 10907–10919, 2024. DOI: 10.15446/rfnam.v77n3.112180. Disponível em: https://revistas.unal.edu.co/index.php/refame/article/view/112180. Acesso em: 11 ene. 2025.

Chicago

Alzate Marin, Estefany Johana, Luis Jairo Toro Restrepo, y July Andrea Suárez Gómez. 2024. «Leaf spectrum analysis of three tropical timber species: Diomate (Astronium graveolens), Choibá (Dipteryx oleifera), and Algarrobo (Hymenaea courbaril)». Revista Facultad Nacional De Agronomía Medellín 77 (3):10907-19. https://doi.org/10.15446/rfnam.v77n3.112180.

Harvard

Alzate Marin, E. J., Toro Restrepo, L. J. y Suárez Gómez, J. A. (2024) «Leaf spectrum analysis of three tropical timber species: Diomate (Astronium graveolens), Choibá (Dipteryx oleifera), and Algarrobo (Hymenaea courbaril)», Revista Facultad Nacional de Agronomía Medellín, 77(3), pp. 10907–10919. doi: 10.15446/rfnam.v77n3.112180.

IEEE

[1]
E. J. Alzate Marin, L. J. Toro Restrepo, y J. A. Suárez Gómez, «Leaf spectrum analysis of three tropical timber species: Diomate (Astronium graveolens), Choibá (Dipteryx oleifera), and Algarrobo (Hymenaea courbaril)», Rev. Fac. Nac. Agron. Medellín, vol. 77, n.º 3, pp. 10907–10919, sep. 2024.

MLA

Alzate Marin, E. J., L. J. Toro Restrepo, y J. A. Suárez Gómez. «Leaf spectrum analysis of three tropical timber species: Diomate (Astronium graveolens), Choibá (Dipteryx oleifera), and Algarrobo (Hymenaea courbaril)». Revista Facultad Nacional de Agronomía Medellín, vol. 77, n.º 3, septiembre de 2024, pp. 10907-19, doi:10.15446/rfnam.v77n3.112180.

Turabian

Alzate Marin, Estefany Johana, Luis Jairo Toro Restrepo, y July Andrea Suárez Gómez. «Leaf spectrum analysis of three tropical timber species: Diomate (Astronium graveolens), Choibá (Dipteryx oleifera), and Algarrobo (Hymenaea courbaril)». Revista Facultad Nacional de Agronomía Medellín 77, no. 3 (septiembre 1, 2024): 10907–10919. Accedido enero 11, 2025. https://revistas.unal.edu.co/index.php/refame/article/view/112180.

Vancouver

1.
Alzate Marin EJ, Toro Restrepo LJ, Suárez Gómez JA. Leaf spectrum analysis of three tropical timber species: Diomate (Astronium graveolens), Choibá (Dipteryx oleifera), and Algarrobo (Hymenaea courbaril). Rev. Fac. Nac. Agron. Medellín [Internet]. 1 de septiembre de 2024 [citado 11 de enero de 2025];77(3):10907-19. Disponible en: https://revistas.unal.edu.co/index.php/refame/article/view/112180

Descargar cita

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Visitas a la página del resumen del artículo

165

Descargas

Los datos de descargas todavía no están disponibles.