Evaluación comportamental y adaptativa de vacas en lactancia Costeño con Cuernos y Gyrolando bajo condiciones de bosque seco tropical (Colombia)
Behavioral and adaptive evaluation of lactating Costeño con Cuernos and Gyrolando cows under tropical dry forest conditions (Colombia)
DOI:
https://doi.org/10.15446/rfmvz.v72n3.121043Keywords:
bienestar animal, adaptación, estrés por calor, microclima (es)animal wellfare, adaptation, heat stress, microclimate (en)
Downloads
El estrés por calor es uno de los desafíos para la producción bovina en regiones tropicales, afectando el bienestar animal y la eficiencia productiva. Este estudio tuvo como objetivo caracterizar el comportamiento de bovinos de las razas Costeño con Cuernos (CCC) y Gyrolando en condiciones de bosque seco tropical en Colombia, evaluando su respuesta comportamental ante diferentes rangos horarios y condiciones microclimáticas. La investigación se realizó en un sistema silvopastoril del centro de investigación Motilonia de Agrosavia a una altitud de 106 m s. n. m. con temperatura promedio multianual de 29,4 °C y humedad relativa promedio del 70%. Se observaron 12 vacas en lactancia (6 CCC y 6 Gyrolando) durante los meses de julio a septiembre de 2023, registrando 20 variables comportamentales e indicadores bioclimáticos como índice temperatura-humedad. Los datos fueron analizados mediante análisis factorial de múltiples correspondencias y clasificación jerárquica. Los resultados revelaron dos clústeres de comportamiento: clúster 1 (condiciones climáticas adversas) agrupó animales más activos durante las horas de mayor calor (12:00–14:00), con mayor pastoreo y menor descanso. Este grupo estuvo compuesto principalmente por la raza CCC. El clúster 2 (condiciones climáticas moderadas) presentó mayor rumia echado, descanso en sombra y menor actividad general, predominando la raza Gyrolando. Se concluye que la raza criolla CCC muestra actividades comportamentales más adaptativas en ambientes calurosos, lo que podría reforzar su valor en sistemas ganaderos sostenibles. La integración de herramientas multivariantes y monitoreo ambiental permite identificar estrategias de manejo orientadas al bienestar animal y la productividad bajo condiciones climáticas extremas.
Heat stress is one of the main challenges for cattle production in tropical regions, as it affects both animal welfare and productive efficiency. This study aimed to characterize the behavior of Costeño con Cuernos (CCC) and Gyrolando cattle under tropical dry forest conditions in Colombia, assessing their behavioral responses across different time periods and microclimatic conditions. The research was conducted in a silvopastoral system at the Motilonia Research Center of Agrosavia, located at an altitude of 106 m a.s.l., with a multiyear average temperature of 29.4 °C and an average relative humidity of 70%. Twelve lactating cows (six CCC and six Gyrolando) were observed from July to September 2023, and 20 behavioral variables, along with bioclimatic indicators such as the temperature–humidity index, were recorded. Data were analyzed using multiple correspondence analysis and hierarchical clustering. Results revealed two behavioral clusters: Cluster 1 (adverse climatic conditions) grouped animals that were more active during the hottest hours (12:00-14:00), with increased grazing activity and reduced resting behavior. This cluster consisted mainly of CCC cows. Cluster 2 (moderate climatic conditions) was characterized by predominant lying rumination, shaded resting, and lower overall activity, primarily involving Gyrolando cows. It is concluded that the native CCC breed exhibits more adaptive behavioral patterns under hot environmental conditions, underscoring its potential value for sustainable cattle production systems. The integration of multivariate tools and environmental monitoring allows the identification of management strategies aimed at improving animal welfare and productivity under extreme climatic conditions.
References
Barragán, W., Mahecha, L., Moreno, J., & Cajas, Y. (2017). Diurnal ingestive behavior and heat stress in cows grazing in silvopastoral systems and in a tree-less pasture. Livestock Research for Rural Development, 29. http://www.lrrd.org/lrrd29/12/wils29234.html
Barsotti, M., de Almeida, R. G., Macedo, M. C., Zawada, P., Werner, J., & Dickhoefer, U. (2024). Behavioural responses of beef cattle to different grazing systems and the influence of these responses on water productivity of livestock in a tropical savannah. Animal, 18(4). https://doi.org/10.1016/j.animal.2024.101117
Baumgard, L. H., & Rhoads, R. P. (2013). Effects of heat stress on postabsorptive metabolism and energetics. Annual Review of Animal Biosciences, 1, 311–337. https://doi.org/10.1146/annurev-animal-031412-103644
Becker, C. A., & Stone, A. E. (2020). Graduate student literature review: Heat abatement strategies used to reduce negative effects of heat stress in dairy cows. Journal of Dairy Science, 103(10), 9667–9675. https://doi.org/10.3168/jds.2020-18536
Bernabucci, U. (2019). Climate change: Impact on livestock and how can we adapt. Animal Frontiers, 9(1), 3–5. https://doi.org/10.1093/af/vfy039
Brennan, J., Johnson, P., & Olson, K. (2021). Classifying season-long livestock grazing behavior with the use of a low-cost GPS and accelerometer. Computers and Electronics in Agriculture, 181. https://doi.org/10.1016/j.compag.2020.105957
Broom, D. M. (2021). Describing, recording and measuring behaviour. En M. Patiño (Ed). Broom and Fraser’s Domestic Animal Behaviour and Welfare (6th ed., pp 31–40). Editorial CAB international. https://doi.org/10.1079/9781789249835.0003 Carmickle, A. T., Larson, C. C., Hernandez, F. S., Pereira, J. M. V., Ferreira, F. C., Haimon, M. L. J., Jensen, L. M., Hansen, P. J., & Denicol, A. C. (2022). Physiological responses of Holstein calves and heifers carrying the SLICK1 allele to heat stress in California and Florida dairy farms. Journal of Dairy Science, 105(11), 9216–9225. https://doi.org/10.3168/jds.2022-22177
Collier, R. J., Baumgard, L. H., Zimbelman, R. B., & Xiao, Y. (2019). Heat stress: Physiology of acclimation and adaptation. Animal Frontiers, 9(1), 12–19. https://doi.org/10.1093/af/vfy031
Freitas Silveira, R. M., Ferreira, J., Busanello, M., Maria de Vasconcelos, A., Jannuzzi Valente, F. L., & Evangelista Façanha, D. A. (2021). Relationship between thermal environment and morphophysiological, performance and carcass traits of Brahman bulls raised on tropical pasture: A canonical approach to a set of indicators. Journal of Thermal Biology, 96. https://doi.org/10.1016/j.jtherbio.2020.102814
Giro, A., Pezzopane, J. R. M., Barioni Junior, W., Pedroso, A. de F., Lemes, A. P., Botta, D., Romanello, N., Barreto, A. do N., & Garcia, A. R. (2019). Behavior and body surface temperature of beef cattle in integrated crop-livestock systems with or without tree shading. Science of the Total Environment, 684, 587–596. https://doi.org/10.1016/j.scitotenv.2019.05.377
Holdridge, L. (1978). Ecología basada en zonas de vida. Instituto Interamericano de Ciencias Agrícolas (IICA). https://hdl.handle.net/11324/7936
Husson, F., Josse, J., Le, S., & Mazet, J. (2024). Package “FactoMineR”: Multivariate exploratory data analysis and data mining. http://factominer.free.fr
Islam, M. A., Lomax, S., Doughty, A., Islam, M. R., Jay, O., Thomson, P., & Clark, C. (2021a). Automated monitoring of cattle heat stress and its mitigation. Frontiers in Animal Science, 2, 737213. https://doi.org/10.3389/fanim.2021.737213
Islam, M. A., Lomax, S., Doughty, A. K., Islam, M. R., Thomson, P. C., & Clark, C. E. F. (2021b). Revealing the diversity in cattle behavioural response to high environmental heat using accelerometer-based ear tag sensors. Computers and Electronics in Agriculture, 191. https://doi.org/10.1016/j.compag.2021.106511
Kassambara, A., & Mundt, F. (2020). Extract and visualize the results of multivariate data analyses. https://github.com/kassambara/factoextra/issues
Kim, W. S., Peng, D. Q., Jo, Y. H., Nejad, J. G., & Lee, H. G. (2021). Responses of beef calves to long-term heat stress exposure by evaluating growth performance, physiological, blood, and behavioral parameters. Journal of Thermal Biology, 100. https://doi.org/10.1016/j.jtherbio.2021.103033
Lê, S., Josse, J., & Husson, F. (2008). FactoMineR: An R package for multivariate analysis. Journal of Statistical Software, 25(1), 1–18. http://www.jstatsoft.org/
Lemal, P., Tran, M.-N., Atashi, H., Schroyen, M., & Gengler, N. (2024). Adding behavior traits to select for heat tolerance in dairy cattle. JDS Communications, 5, 368–373. https://doi.org/10.3168/jdsc.2023-0421
Maia, G. G., Siqueira, L. G. B., Vasconcelos, C. O. de P., Tomich, T. R., Camargo, L. S. de A., Rodrigues, J. P. P., de Menezes, R. A., Gonçal-ves, L. C., Teixeira, B. F., Grando, R. de O., Nogueira, L. A. G., & Pereira, L. G. R. (2020). Effects of heat stress on rumination activity in Holstein-Gyr dry cows. Livestock Science, 239. https://doi.org/10.1016/j.livsci.2020.104092
Martin, P., & Bateson, P. (2007). Measuring behaviour: An introductory guide (3rd ed.). Cambridge University Press. https://doi.org/10.1017/CBO9780511810893
Masson-Delmotte, V., Zhai, P., Pörtner, H.-O., Roberts, D., Skea, J., Shukla, P. R., Pirani, A., Moufouma-Okia, W., Péan, C., Pidcock, R., Connors, S., Robin, J. B., Zhou, X., Maycock, T., Tignor, M., & Waterfield, T. (2019). Calentamiento global de 1,5 °C: Informe del Panel Intergubernamental de Expertos sobre el Cambio Climático (IPCC). https://www.ipcc.ch
Moller, H., Krogh, M., Petersen, M., Nielsen, L., & Capion, N. (2024). Comparison and interobserver reliability between a visual analog scale and the Wisconsin Calf Health Scoring Chart for detection of respiratory disease in dairy calves. Journal of Dairy Science, 107, 1102–1109. https://doi.org/10.3168/jds.2023-23554 Negri, R., Daltro, D., Kluska, S., Otto, P. I., Machado, M. A., do Carmo Panetto, J. C., Martins, M. F., de Oliveira, H. R., Cobuci, J. A., & da Silva, M. V. G. B. (2023). Genomic-enhanced breeding values for heat stress tolerance in Girolando cattle in Brazil. Livestock Science, 278. https://doi.org/10.1016/j.livsci.2023.105360
Passamonti, M. M., Somenzi, E., Barbato, M., Chillemi, G., Colli, L., Joost, S., Milanesi, M., Negrini, R., Santini, M., Vajana, E., Williams, J. L., & Ajmone‐Marsan, P. (2021). The quest for genes involved in adaptation to climate change in ruminant livestock. Animals, 11(10), 2833. https://doi.org/10.3390/ani11102833
Pezzopane, J. R. M., Nicodemo, M. L. F., Bosi, C., Garcia, A. R., & Lulu, J. (2019). Animal thermal comfort indexes in silvopastoral systems with different tree arrangements. Journal of Thermal Biology, 79, 103–111. https://doi.org/10.1016/j.jtherbio.2018.12.015
Pires, B. V., Stafuzza, N. B., Lima, S. B. G. P. N. P., Negrão, J. A., & Paz, C. C. P. (2019). Differential expression of heat shock protein genes associated with heat stress in Nelore and Caracu beef cattle. Livestock Science, 230. https://doi.org/10.1016/j.livsci.2019.103839
R Core Team. (2025). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/
Ripamonti, A., Foggi, G., Mantino, A., Turini, L., Goracci, J., Silvi, A., Finocchi, M., & Mele, M. (2025). Beef cattle performance and hair cortisol accumulation in silvopastoral and pastoral systems: A 2-year assessment. Animal, 19(3). https://doi.org/10.1016/j.animal.2025.101425
Santos, A., Medeiros, V., & Gonçalves, G. (2023). Monitoring and classification of cattle behavior: A survey. Smart Agricultural Technology, 3. https://doi.org/10.1016/j.atech.2022.100091
Summer, A., Lora, I., Formaggioni, P., & Gottardo, F. (2019). Impact of heat stress on milk and meat production. Animal Frontiers, 9(1), 39–46. https://doi.org/10.1093/af/vfy026
Veissier, I., Van laer, E., Palme, R., Moons, C. P. H., Ampe, B., Sonck, B., Andanson, S., & Tuyttens, F. A. M. (2018). Heat stress in cows at pasture and benefit of shade in a temperate climate region. International Journal of Biometeorology, 62(4), 585–595. https://doi.org/10.1007/s00484-017-1468-0
Yan, G., Shi, Z., Cui, B., & Li, H. (2022). Developing a new thermal comfort prediction model and web-based application for heat stress assessment in dairy cows. Biosystems Engineering, 214, 72–89. https://doi.org/10.1016/j.biosystemseng.2021.12.006
Zuluaga, L., Caballero, A. R., Arias, J., Rivera, M., Garay, G., & Mojica Rodríguez, J. E. (2025). Carbon stored in trees and forage production of two silvopastoral systems in the Colombian dry Caribbean. Livestock Research for Rural Development, 37. http://www.lrrd.org/lrrd37/1/3701lzul.html
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License
Copyright (c) 2025 Sandra Carolina Perdomo Ayola, Jhon Jacobo Cañas Álvarez, Enoc Paternina Díaz, Guillermo Antonio Garay Oyola, Alcides Gabriel Montiel Vargas

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
This article is published under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).
The authors retain copyright of their work and grant the journal the right of first publication.
Readers are free to copy and redistribute the material in any medium or format under the license terms, provided proper attribution is given, the work is not used for commercial purposes, and no modifications or derivatives are made.



