Estudio de la estabilidad estructural de óxidos mixtos Zn-Al tipo hidrotalcita en precursores catalíticos CoNiMo frente HDS de tiofeno
Study od structural stability of mixed oxides Zn-Al hydrotalcite type in catalytic precursors CoNiMo front HDS of thiofeno
DOI:
https://doi.org/10.15446/rev.fac.cienc.v6n2.64506Palabras clave:
CoMo, emisiones atmosféricas, HDS, NiMo, óxidos mixtos Zn-Al (es)CoMo, atmospheric emissions, HDS, NiMo, Zn-Al mixed oxides (en)
Descargas
La industria petrolera, es una de las principales fuentes responsable de emisiones atmosféricas tales como: CO, CO2, SO2, NOx, hidrocarburos y partículas suspendidas, la cual busca mitigar la contaminación ambiental originada en sus refinerías utilizando algunos procesos, como el hidrotratamiento (HDT). El corazón del HDT, son los catalizadores empleados, en función al soporte catalítico y los metales usados durante su formulación. Es por ello, que esta investigación se centró en estudiar la estabilidad estructural de óxidos mixtos Zn-Al tipo hidrotalcita (HT) en precursores catalíticos CoNiMo frente HDS de tiofeno, a una temperatura de calcinación de 450 °C. Inicialmente, se sintetizó el soporte catalítico HT a relaciones variables de Zn-Al de 0.00 a 1.00Al, una vez obtenido el intervalo óptimo de la HT (0.00-0.33Al), se procedió a formular los precursores catalíticos CoMo/NiMo, a través de dos etapas de calcinación, la primera se impregna el soporte tipo hidrotalcita (HT) sin calcinar con los metales CoNi y CoMo, luego de impregnar con dichos metales se calcina por única vez; mientras que en la segunda etapa, se calcina los sólidos antes de impregnar y después de la impregnación con los metales antes mencionados. Los resultados obtenidos denotan un excelente comportamiento para los catalizadores con doble etapa de calcinación, siendo los precursores CoMo más efectivos que NiMo; esto puede justificarse por las características fisicoquímicas de las fases de los metales involucrados y de sus vacantes de coordinación.
The oil industry is one of the main sources responsible for atmospheric emissions such as: CO, CO2, SO2, NOx, hydrocarbons and suspended particles, which seeks to mitigate environmental pollution from its refineries using some processes, such as hydrotreatment (HDT). The heart of the HDT is the catalysts used, depending on the catalytic support and the metals used during its formulation. Therefore, this research focused on studying the structural stability of mixed Zn-Al type hydrotalcite (HT) oxides in catalysts CoNiMo versus thiophene HDS at a calcination temperature of 450 °C. Initially, the catalytic support HT was synthesized at varying Zn-Al ratios of 0.00 to 1.00Al, once the optimal range of HT (0.00-0.33Al) was obtained, the catalytic precursors CoMo/NiMo, through two stages of calcination, the first is impregnated the support type hydrotalcite (HT) without calcining with the metals CoNi and CoMo, after impregnating with these metals is calcined once only; While in the second stage the solids are calcined before impregnation and after impregnation with the aforementioned metals. The obtained results show an excellent performance for the catalysts with double calcination stage, being CoMo precursors more effective than NiMo; this can be justified by the physicochemical characteristics of the phases of the metals involved and their coordination vacancies.
Referencias
Acta del aire limpio de California, (CAA). (2004). Recuperado de http://www.epw.senate.gov/envlaws/cleanair.pdf
Agencia de Protección Ambiental (APA). (1970). Recuperado de
http://europa.eu/legislation_summaries/environment/waste_management/l28045_es.htm
Álvarez, R. (2015). Trabajo Especial de Grado para optar al título de Doctor en Ingeniería. Área Ambiente. Facultad de Ingeniería de la Universidad de Carabobo.
Álvarez, R. & Linares, C. (2015). Uso de precursores catalíticos NiMoóxidos mixtos Zn-Al para ser empleados en reacciones de hidrotratamiento. Revista Agrollania,12.
Álvarez, R.; Toffolo, A.; Linares, C. & Pérez, V. (2010). Synthesis and Characterization of Co-
Mo/hydrotalcite with variable Zn-Al content for hydrotreating of Thiophene. Revista Catalysis Letter. 137, 150-155. DOI 10.1007/s10562-010-0337-9.
Cacciotti, I.; Bianco, A.; Lombardi, M. & Montanaro, L. J. (2009). Mg-Substituted hydrotalcite: formation and properties. European Ceramic Society, 29, 2969-2978.
Decreto 638. (1995). Normas sobre calidad del aire y contaminación ambiental. Gaceta Oficial No 4.899. Ministerio del Ambiente. República Bolivariana de Venezuela.
Fernández, C.; Fernández, L.; Escudero, P. & Pérez. J. (2009). Evolución del contenido de azufre en la gasolina comercializada en Galicia (España) como consecuencia de la aplicación del real decreto 1700/2003. Investigación tecnología, 20(1).
Guerra, J.; Brito, J.; González, G.; Villalba, R.; Pagano, M. & Sánchez, J. (2008). XXI Simposium
Iberoamericano de Catálisis. Málaga, España, 1164-1170.
Isa, Nadia.; Noel, W. J.; Othman, M. R. & Ahmad, A. L. (2008). International Conference on Environment. (ICENV). Studies on adsorptiondesorption of carbon dioxide with respect to thermal regeneration of hydrotalcites.
Iova, F. & Trutia, A., (2000). On the structure of the NiO-Al2O3 systems, studied by diffuse-reflectance spectroscopy. Optical Materials, 13, 455-458.
JCPDS PDF: Joint Committe on Powder Difraction Standards Powder Difraction files. (1977). International Centre for Difraction Data: Newton Square, PA
Kloprogge, T.; Hickey, L. & Frost, R. (2004). The effects of synthesis pH and hydrothermal treatment on the formation of zinc aluminum hydrotalcites. Journal of Solid State Chemistry. Elsevier Inc,177, 4047-4057.
Liang, M.; Kang, W. & Xie, K. (2009). Comparison of reduction behavior of Fe2O3, ZnO and ZnFe2O4 by TPR technique. Journal of Natural Gas Chemistry, 19, 110-113.
Linares, C.; López, J.; Scaffidi, A. & Scott, C. (2005). Preparation of ZnNiMo g-alúmina catalysts from recycled Ni for hydrotreating reactions. Applied Catalysis. Elsevier. B.V., 292, 115.
Linares, C. & Fernández, M. (2008). Estudio de las reacciones de hidrodesulfuración de dibenzotieofeno y hidrogenación de 2-metilnaftaleno con catalizadores ZnNiMo G-Alúmina. Catalysis Letter, 126.
López-Salinas, E. & Pedraza, F. (1998). Hidrotalcitas: Precursores de materiales adsorbentes de SOx. Monografía no publicada. Instituto Mexicano del Petróleo. Subdirección de Transformación Industrial. México.
Mac.; Chen, Y.; Ye, W. & Wang, C. (2008). Journal of Colloid and Interface Science, 317, 148-154.
Monzón, A.; Romeo, E.; Trujillano, R.; Labajos, F. & Rives, V. (1999). Use of hydrotalcites as catalytic precursors of multimetallic mixed oxides. Application in the hydrogenation of acetylene. Applied Catalysis A: General, 185(1), 53-63.
Mustafa, H. & Hanni, V. (2006). Innovative refining technology1- crude oil quality improvement. Advances in Energy Research.
Seftel, E. M.; Popovici, E.; Beyers, E.; Mertens, M.; Zhu, H. Y. & Cool, P., & Vansant, E. F. (2008). New MgAl-LDH/TiO2 nanocomposites with photocatalytic application. Journal of Nanoscience and Nanotechnology, 10(12), 8227-8233.
Toffolo., A. (2008). Síntesis y caracterización de catalizadores CoMo en estructuras tipo hidrotalcita. Universidad de Carabobo. Venezuela.
Zhao, R.; Yin, C.; Zhao, H. & Liu, C. (2003). Synthesis, characterization, and application of hydrotalcites in hydrodesulfurization of FCC gasoline. Fuel Processing Technology, 81(3), 201-209.
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
Licencia
Derechos de autor 2017 Revista de la Facultad de Ciencias

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Los autores o titulares del derecho de autor de cada artículo confieren a la Revista de la Facultad de Ciencias de la Universidad Nacional de Colombia una autorización no exclusiva, limitada y gratuita sobre el artículo que una vez evaluado y aprobado se envía para su posterior publicación ajustándose a las siguientes características:
1. Se remite la versión corregida de acuerdo con las sugerencias de los evaluadores y se aclara que el artículo mencionado se trata de un documento inédito sobre el que se tienen los derechos que se autorizan y se asume total responsabilidad por el contenido de su obra ante la Revista de la Facultad de Ciencias, la Universidad Nacional de Colombia y ante terceros.
2. La autorización conferida a la revista estará vigente a partir de la fecha en que se incluye en el volumen y número respectivo de la Revista de la Facultad de Ciencias en el Sistema Open Journal Systems y en la página principal de la revista (https://revistas.unal.edu.co/index.php/rfc/index), así como en las diferentes bases e índices de datos en que se encuentra indexada la publicación.
3. Los autores autorizan a la Revista de la Facultad de Ciencias de la Universidad Nacional de Colombia para publicar el documento en el formato en que sea requerido (impreso, digital, electrónico o cualquier otro conocido o por conocer) y autorizan a la Revista de la Facultad de Ciencias para incluir la obra en los índices y buscadores que estimen necesarios para promover su difusión.
4. Los autores aceptan que la autorización se hace a título gratuito, por lo tanto renuncian a recibir emolumento alguno por la publicación, distribución, comunicación pública y cualquier otro uso que se haga en los términos de la presente autorización.
5. Todos los contenidos de la Revista de la Facultad de Ciencias, están publicados bajo la Licencia Creative Commons Atribución – No comercial – Sin Derivar 4.0.
MODELO DE CARTA DE PRESENTACIÓN y CESIÓN DE DERECHOS DE AUTOR