Bootstrap-based inference for grouped data
Inferencia para datos agrupados vía bootstrap
DOI:
https://doi.org/10.15446/rev.fac.cienc.v4n2.54254Keywords:
Bootstrap, estimation, grouped Data (en)Bootstrap, datos agrupados, estimación (es)
Downloads
Los datos agrupados se reeren a variables continuas que se dividen en intervalos no necesariamente de la misma longitud para facilitar su interpretación. Contrario a lo que ocurre en datos no agrupados, la estimación de simples estadísticos de resumen como la media o la moda, o más complejos como un percentil o el coeciente de variación, es una tarea difícil en datos agrupados. Cuando no se conoce la distribución de probabilidad que genera los datos, la inferencia en datos no agrupados se realiza utilizando métodos paramétricos o no paramétricos de remuestreo. Sin embargo, no existen métodos equivalentes para datos agrupados. En este documento se propone, describe e ilustra un método basado en bootstrap para estimar los parámetros de una distribución desconocida a partir de datos agrupados.
References
Carpenter, J. & Bithell, J. (2000), Bootstrap Confidence Intervals: When, Which, What? A Practical Guide for Medical Statisticians, Statistics in Medicine, 19(9), 1141-1164.
Davison, A. C.; Hinkley, D. V. & Young, G. A. (2003), Recent Developments in Bootstrap Methodology, Statistical Science, 18(2), 141-157.
DiCiccio, T. J. & Efron, B. (1996), Bootstrap Confidence Intervals, Statistical Science, 11 (3), 189-228.
Efron, B. (1979), Bootstrap Methods: Another Look at the Jackknife, The Annals of Statistics, 7 (1), 1-27.
Efron, B. (1987), Better Bootstrap Confidence Intervals, Journal of the American Statistical Association, 82 (397), 171-185.
Efron, B. (2003), Second Thoughts on the Bootstrap, Statistical Science, 18( 2), 135-140.
Hajargasht, G.; Gri_ths, W. E.; Brice, J. & Rao, D. P. & Chotikapanich, D. (2012), Inference for income distributions using grouped data, Journal of Business & Economic Statistics, 30( 4), 563-575.
Harrell, F. E. & Davis, C. E. (1982), A New Distribution-Free Quantile Estimator, Biometrika, 69( 3), 635-640.
Heitjan, D. F. (1989), Inference from grouped continuous data: A review, Statistical Science, 4(2), 164-179.
Hinkley, D. V. (1988), Bootstrap Methods, Journal of the Royal Statistical Society. Series B (Methodological), 50(3), 321-337.
Kanazawa, Y. (1992), An Optimal Variable Cell Histogram Based on the Sample Spacings, The Annals of Statistics, 20 (1), 291-304.
Letson, D. & McCullogh, B. D. (1998), Better Confidence Intervals: The Double Bootstrap with No Pivot, American Journal of Agricultural Economics, 80(3), 552-559.
On, C. W. (2002), Mean, Variance and Standard Deviation for Grouped Data, http://www.angelfire.com/blues/michaelyang/ive/dms/chapter_05/5_6_StaDev.html. Accessed: 2015-11-18.
Pierce, R. (2014), Mean, Median and Mode from Grouped Frequencies, https://www.mathsisfun.com/data/frequency-grouped-mean-median-mode.html. Accessed: 2015-11-18.
R Core Team (2015), R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria. URL: http://www.R-project.org/.
Scott, D. W. (1979), On Optimal and Data-Based Histograms, Biometrika, 66 (3), 605-610.
Scott, D. W. & Scott, W. R. (2008), Smoothed Histograms for Frequency Data on Irregular Intervals, The American Statistician, 62(3), 256-261.
Taylor, C. C. (1987), Akaike's Information Criterion and the Histogram, Biometrika, 74(3), 636-639.
Vélez, J. I. & Correa, J. C. (2014), Should we think of a different Median estimator?, Revista Comunicaciones en Estadística, 7( 2), 1-8.
Wand, M. P. (1997), Data-based Choice of Histogram Bin Width, The American Statistician, 51(1), 59-64.
Zhan, Y. & Wellner, J. A. (1995), Double censoring: characterization and computation of the nonparametric maximum likelihood estimator, Technical report.
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
CrossRef Cited-by
1. Zahra AghahosseinaliShirazi, João Pedro A. R. da Silva, Camila P. E. de Souza. (2024). Parameter estimation for grouped data using EM and MCEM algorithms. Communications in Statistics - Simulation and Computation, 53(8), p.3616. https://doi.org/10.1080/03610918.2022.2108843.
Dimensions
PlumX
Article abstract page views
Downloads
License
The authors or copyright holders of each paper confer to the Journal of the Faculty of Sciences of Universidad Nacional de Colombia a non-exclusive, limited and free authorization on the paper that, once evaluated and approved, is sent for its subsequent publication in accordance with the following characteristics:
- The corrected version is sent according to the suggestions of the evaluators and it is clarified that the paper mentioned is an unpublished document on which the rights are authorized and full responsibility is assumed for the content of the work before both the Journal of the Faculty of Sciences, Universidad Nacional de Colombia and third parties.
- The authorization granted to the Journal will be in force from the date it is included in the respective volume and number of the Journal of the Faculty of Sciences in the Open Journal Systems and on the Journal’s home page (https://revistas.unal.edu.co/index.php/rfc/index), as well as in the different databases and data indexes in which the publication is indexed.
- The authors authorize the Journal of the Faculty of Sciences of Universidad Nacional de Colombia to publish the document in the format in which it is required (printed, digital, electronic or any other known or to be known) and authorize the Journal of the Faculty of Sciences to include the work in the indexes and search engines deemed necessary to promote its diffusion.
- The authors accept that the authorization is given free of charge, and therefore they waive any right to receive any emolument for the publication, distribution, public communication, and any other use made under the terms of this authorization.
- All the contents of the Journal of the Faculty of Sciences are published under the Creative Commons Attribution – Non-commercial – Without Derivative 4.0.License
MODEL LETTER OF PRESENTATION and TRANSFER OF COPYRIGHTS
Personal data processing policy
The names and email addresses entered in this Journal will be used exclusively for the purposes set out in it and will not be provided to third parties or used for other purposes.