Esta es un versión antigua publicada el 2022-01-01. Consulte la versión más reciente.

Publicado

2022-01-01

Versiones

EVALUATION OF THREE LIGNOCELLULOSE BIOMASS MATERIALS (BARLEY HUSK, CORN COBS, AGAVE LEAVES) AS PRECURSORS OF ACTIVATED CARBON

EVALUACIÓN DE TRES MATERIALES DE BIOMASA LIGNOCELULOSICA (CÁSCARA DE CEBADA, MAZORCAS DE MAÍZ, HOJAS DE AGAVE) COMO PRECURSORES DEL CARBÓN ACTIVADO

DOI:

https://doi.org/10.15446/rev.fac.cienc.v11n1.97719

Palabras clave:

Activated carbon, Barley husk, Corn cob, Agave leaves, Lignocellulosic materials, Biomass, Thermogravimetry (en)
Carbón activado, Cáscara de cebada, Mazorca de maíz, Hojas de agave, Materiales lignocelulósicos · Biomasa · Termogravimetría (es)

Autores/as

  • Francisco Prieto-García Universidad Autónoma del Estado de Hidalgo
  • Roberto A. Canales-Flores Universidad Autónoma del Estado de Hidalgo
  • Judith Prieo-Méndez Universidad Autónoma del Estado de Hidalgo
  • Otilio A. Acevedo-Sandoval Universidad Autónoma del Estado de Hidalgo
  • Elena M. Otazo-Sánchez Universidad Autónoma del Estado de Hidalgo

Lignocellulosic biomass is a promising alternative and renewable energy source that can be transformed into other value-added products such as activated carbon. The objective was to evaluate the barley husk (Hordeum vulgare L.), the corn cobs (Zea Mays L.) and the agave leaves (Agave salmiana) as potential precursors of activated carbon. These precursors were obtained from Almoloya and Apan in the State of Hidalgo, Mexico. The raw materials were washed with distilled water, dried at 105 ºC for 72 h in an oven, ground in a blade mill to obtain a particle size of 0.3-1.0 mm and finally sieved through mesh sieves of 18 and 45. Humidity was determined according to ASTM D3173 (ASTM, 1996), ash according to ASTM D3174 (ASTM, 2000), volatile matter according to ASTM D3175 (ASTM, 1997), fixed carbon according to ASTM D3172 (ASTM, 1997), total sugars and fats according to TAPPI T204 (TAPPI, 1997), Klason Lignin according to TAPPI T222 (TAPPI,   1998), holocellulose according to the method described by (Wise et al., 1946), and (, ( and ( cellulose according to TAPPI T203 (TAPPI 1999). The results show that contents from 82 to 83% for holocellulose, from 52 to 79% for cellulose, and from 15 to 26% for lignin, were determined. Elemental analysis showed high carbon contents with values of 42-45%. Particle sizes between 390.9 mm and 610.7 mm were found. Thermogravimetric analysis showed similar profiles of thermal decomposition, being cellulose the main stage, with peaks around 300 °C. Regarding the surface morphology, the lignocellulosic residues showed fibrous and porous structure. From these findings, it is established that the precursors analyzed can be considered as potential precursors of activated carbons. The results presented here may facilitate improvements in the pyrolysis and activation areas of this lignocellulosic residues. The conditions for an acceptable yield of biochar were tested, these were: carbonization temperature of 400 °C, carbonization time of 30 min, precursor mass of 2-10 g and N2 flow rate of 150 cc/min. The biocarbons produced under these conditions were physically and chemically characterized. Biochar yields of 19.75% were obtained for corn cob (CCB), 32.88% for barley husk (BHB) and 31.14% for Agave salmiana leaves (ALB). Biocarbons with a predominantly macroporous structure, amorphous structure, numerous oxygen functional groups, anionic surface and moderate ash content were obtained. The results of this investigation show that barley husk, corn cob, and agave leaves are likely precursors for biochar production with good dye adsorption capacities.

La biomasa lignocelulósica es una prometedora fuente de energía alternativa y renovable que puede transformarse en otros productos de valor añadido como el carbón activado. El objetivo fue evaluar la cáscara de cebada (Hordeum vulgare L.), las mazorcas de maíz (Zea Mays L.) y las hojas de agave (Agave salmiana) como potenciales precursores del carbón activado. Estos precursores se obtuvieron de Almoloya y Apan en el Estado de Hidalgo, México. Las materias primas se lavaron con agua destilada, se secaron a 105 ºC durante 72 h en un horno, se molieron en un molino de cuchillas para obtener un tamaño de partícula de 0,3-1,0 mm y finalmente se tamizaron a través de tamices de malla de 18 y 45. La humedad se determinó de acuerdo con la Norma ASTM D3173 (ASTM, 1996), cenizas según la Norma ASTM D3174 (ASTM, 2000), materia volátil según la Norma ASTM D3175 (ASTM, 1997), carbono fijo según la Norma ASTM D3172 (ASTM, 1997), azúcares y grasas totales según el TAPPI T204 (TAPPI, 1997), Lignina Klason según el TAPPI T222 (TAPPI,  1998), holocelulosa según el método descrito por (Wise et al., 1946), y a, b y g celulosa según el TAPPI T203 (TAPPI 1999). Los resultados muestran que se determinaron contenidos de 82% a 83% para holocelulosa, de 52% a 79% para celulosa y de 15% a 26% para lignina. El análisis elemental mostró altos contenidos de carbono con valores de 42-45%. Se encontraron tamaños de partículas entre 390,9 µm y 610,7 µm. El análisis termogravimétrico mostró perfiles similares de descomposición térmica, siendo la celulosa el escenario principal, con picos alrededor de los 300 °C. En cuanto a la morfología superficial, los residuos lignocelulósicos mostraron estructura fibrosa y porosa. A partir de estos hallazgos, se establece que los precursores analizados pueden considerarse como potenciales precursores de los carbones activados. Los resultados presentados aquí pueden facilitar mejoras en las áreas de pirólisis y activación de estos residuos lignocelulósicos. Se probaron las condiciones para un rendimiento aceptable de biocarbón, estas fueron: temperatura de carbonización de 400 °C, tiempo de carbonización de 30 min, masa de precursor de 2-10 g y caudal de N2 de 150 cc/min. Los biocarbonos producidos en estas condiciones se caracterizaron física y químicamente. Se obtuvieron rendimientos de biocarbón de 19,75% para mazorca de maíz (CCB), 32,88% para cáscara de cebada (BHB) y 31,14% para hojas de Agave salmiana (ALB). Se obtuvieron biocarbonos de estructura predominantemente macroporosa, estructura amorfa, numerosos grupos funcionales oxígeno, superficie aniónica y contenido moderado de cenizas. Los resultados de esta investigación muestran que la cáscara de cebada, la mazorca de maíz y las hojas de agave son probablemente precursores de la producción de biocarbón con buenas capacidades de adsorción de colorantes.

 

Referencias

Aislabi TM, Abustan I, Ahmad MA, Foul AA (2013) A review: production of activated carbon from agricultural byproducts via conventional and microwave heating. J Chem Technol Biotechnol 88:1183-1190. doi: 10.1002/jctb.4028

ASTM Standard D3172 (1997) Standard practice for proximate analysis of coal and coke. ASTM International, West Conshohocken, PA.

ASTM Standard D3173 (1996) Standard test method for moisture in the analysis sample of coal and coke. ASTM International, West Conshohocken, PA.

ASTM Standard D3174 (2000) Standard test method for ash in the analysis sample of coal and coke from coal. ASTM International, West Conshohocken, PA.

ASTM Standard D3175 (1997) Standard test method for volatile matter in the analysis sample of coal and coke. ASTM International, West Conshohocken, PA.

Azevedo-Carvalho AF, de Oliva-Neto P, Fernandes-da Silva D, Maria-Pastore G (2013) Xylo-oligosaccharides from lignocellulosic materials: Chemical structure, health benefits and production by chemical and enzymatic hydrolysis. Food Res Int 51: 75–85. doi: 10.1016/j.foodres.2012.11.021

Bagheri N, Abedi J (2009)Preparation of high surface area activated carbon from corn by chemical activation using potassium hydroxide. Chem Eng Res Des87:1059-1064. doi: 10.1016/j.cherd.2009.02.001

Bledzki A K, Mamum A A, Volk J (2010)Barley husk and coconut shell reinforced polypropylene composites: The effect of fibre physical, chemical and surface properties. Compos Sci Technol 70:840. doi: 10.1016/j.compscitech.2010.01.022

Cagnon B, P X, Guillot A, Stoeckli F, Chambat G (2009) Contributions of hemicellulose, cellulose and lignin to the mass and the porous properties of chars and steam activated carbons from various lignocellulosic precursors.Bioresource Technol 100:292-298. doi: 10.1016/j.biortech.2008.06.009

Canales-Flores RA, Prieto-García F (2016) Activation Methods of Carbonaceous Materials Obtained from Agricultural Waste. Chem Biodiversity13:261-268. doi: 10.1002/cbdv.201500039

Demirbas A (2004). Effect of initial moisture content on the yields of oily products from pyrolysis of biomass. J Anal Appl Pyrol 71:803-815. doi: 10.1016/j.jaap.2003.10.008

Espino E, Cakir M, Domenek S, Román-Gutiérrez A D, Belgacem N, Bras J (2014) Isolation and characterization of cellulose nanocrystals from industrial by-products of Agave tequilana and barley.Ind Crop Prod 62:552-559. doi: 10.1016/j.indcrop.2014.09.017

Gani A, Naruse I (2007). Effect of cellulose and lignin content on pyrolysis and combustion characteristics for several types of biomass. Renew Energ 32:649-661. doi: 10.1016/j.renene.2006.02.017.

García-Reyes RB, Rangel-Mendez JR (2009) Contribution of agro-waste material main components (hemicelluloses, cellulose, and lignin) to the removal of chromium (III) from aqueous solution. J Chem Technol Biotechnol 84:1533-1538. doi: 10.1002/jctb.2215

Hameed, B.H., Ahmad, A.L., Latiff, K.N.A. (2007). Adsorption of basic dye (methylene blue) onto activated carbon prepared from rattan sawdust. Dyes and Pigments, 75: 143-149.

Ioannidou O, Zabaniotou A, Antonakou EV, Papazisi KM, Lappas AA, Athanassiou C (2009). Investigating the potential for energy, fuel, materials and chemicals production from corn residues (cobs and stalks) by non-catalytic and catalytic pyrolysis in two reactor configurations. Renew Sust Ener Rev 13:750-762. doi: 10.1016/j.rser.2008.01.004

Kaliyan N, Morey R (2010) Densification characteristics of corn cobs.Fuel Process Technol91:559-565. doi: 10.1016/j.fuproc.2010.01.001

Khezami L,Chetouani A,Taouk B, Capart R (2005) Production and characterisation of activated carbon from wood components in powder: Cellulose, lignin, xylan. Powder Technol 157:48-56. doi: 10.1016/j.powtec.2005.05.009

Kohli D, Garg S, Jana AK (2013) Thermal and morphological properties of chemically treated barley husk fiber. Int J Res Mech Eng Technol 3:153-156.

Li H, Foston MB, Kumar R, Samuel R, Gao X, Hu F, Ragauskas AJ, Wyman CE (2010) Chemical composition and characterization of cellulose for Agave as a fast-growing, drought-tolerant biofuels feedstock. RSC Adv 2:4951-4958. doi: 10.1039/C2RA20557B

Muller BR (2010) Effect of particle size and surface area on the adsorption of albumin-bonded bilirubin on activated carbon.Carbon48:3607-3615. doi: 10.1016/j.carbon.2010.06.011

Nieto-Delgado C, Rangel-Méndez JR (2013) Preparation of Carbon Materials from Lignocellulosic Biomass. In: Rufford TE (ed) Green Carbon Materials. Advanced and Aplications, Taylor & Francis Group, US, pp 51.

Nieto-Delgado C, Terrones M,Rangel-Mendez JR (2011) Development of highly microporous activated carbon from the alcoholic beverage industry organic by-products. Biomass Bioenerg 35:103-112. doi: 10.1016/j.biombioe.2010.08.025

Pereira RG, Martins C, Mendes N, Farias L, Ferreira RC, Oliveira A, Oliveira M, da Costa R (2014) Preparation of activated carbons from cocoa shells and siriguela seeds using H3PO4 and ZnCl2 as activating agents for BSA and α-lactalbumin adsorption. Fuel Process Technol 126:476-486. doi: 10.1016/j.fuproc.2014.06.001

Ramírez, A. P., Giraldo, S., Flórez, E., Acelas, N. (2016) Preparation of activated carbon from palm oil wastes and their application for methylene blue removal. Revista Colombiana de Química, 46 (1): 33-41.

Rangabhashiyam. S., Balasubramanian. P. (2019) The potential of lignocellulosic biomass precursors for biochar production: Performance, mechanism and wastewater application—A review. Industrial Crops and Products, Volume 128:405-423. https://doi.org/10.1016/j.indcrop.2018.11.041

Savova D, Apak E, Ekinci E,Y ardim F, Petrov N, Budinova T, Razvigorova M, Minkova V (2001) Biomass conversion to carbon adsorbents and gas. Biomass Bioenerg 21:133-142. doi: 10.1016/S0961-9534(01)00027-7

Sentorun – Shalaby C, Artok L, Sarici C (2006) Preparation and characterization of activated carbons by one-step steam pyrolysis/activation from apricot stones. Micropor Mesopor Mat88:126-134. doi: 10.1016/j.micromeso.2005.09.003

Skoulou V, Zabaniotou A (2007) Investigation of agricultural and animal wastes in Greece and their allocation to potential application for energy production. Renew Sustain Energ Rev 11:1698-1719. doi: 10.1016/j.rser.2005.12.011

Stefanidis SD, Kalogiannis KG, Iliopoulou EF, Michailof CM, Pilavachi PA, Lappas AA (2014) A study of lignocellulosic biomass pyrolysis via the pyrolysis of cellulose, hemicellulose and lignin. J Anal Appl Pyrol 105:143-150. doi: 10.1016/j.jaap.2013.10.013

TAPPI T203 (1999) Alpha-, beta- and gamma-cellulose in pulp. TAPPI Press, Norcross, Georgia.

TAPPI T204 (1997) Solvent extractives of wood and pulp. TAPPI Press, Norcross, Georgia.

TAPPI T222 (1998) Acid-insoluble lignin in wood and pulp. TAPPI Press, Norcross, Georgia.

Tripathi M, Shahu JN, Ganesan P (2016) Effect of process parameters on production of biochar from biomass waste through pyrolysis: A review. Renew Sust Ener Rev 55:467-481. doi: 10.1016/j.rser.2015.10.122

Tsai WT, Chang CY, Wang SY, Chang CF, Chein SF, Sun HF (2001) Cleaner production of carbon adsorbents by utilizing agricultural waste corn cob. Resour Conserv Recy32:43-53. doi:10.1016/S0921-3449(00)00093-8

Weber, E., Fernandez, M., Wapner, P. (2010). Comparison of X-ray micro-tomography measurements of densities and porosity principally to values measured by mercury porosimetry for carbon–carbon composites, Carbon, 48(8): 2151–2158. https://doi.org/10.1016/j.carbon.2009.11.047

Wise LE, Marphy M, d'Adieco A (1946) A chlorite holocellulose, its fractionation and bearing on summative wood analysis and studies on the hemicelluloses. Pap Trade J 122:35-43.

Wu Y, Wu S, Li Y, Gao J (2009) Physico-chemical characteristics and mineral transformation behavior of ashes from crop straw. Energ Fuels 23:5144-5150. doi: 10.1021/ef900496b

Xiao H, Peng H, Deng S, Yang X, ZhangY, Li Y (2012) Preparation of activated carbon from edible fungi residue by microwave assisted K2CO3 activation—Application in reactive black 5 adsorption from aqueous solution. Bioresource Technol 111:127-133. doi: 10.1016/j.biortech.2012.02.054

Xiong S, Zhuo J, Zhang B, Yao Q (2013) Effect of moisture content on the characterization of products from the pyrolysis of sewage sludge. J Anal Appl Pyrol 104:632-639. doi: 10.1016/j.jaap.2013.05.003

Cómo citar

APA

Prieto-García, F., Canales-Flores, R. A. ., Prieo-Méndez, J. ., Acevedo-Sandoval, O. A. . y Otazo-Sánchez, E. M. . (2022). EVALUATION OF THREE LIGNOCELLULOSE BIOMASS MATERIALS (BARLEY HUSK, CORN COBS, AGAVE LEAVES) AS PRECURSORS OF ACTIVATED CARBON. Revista de la Facultad de Ciencias, 11(1), 17–39. https://doi.org/10.15446/rev.fac.cienc.v11n1.97719

ACM

[1]
Prieto-García, F., Canales-Flores, R.A. , Prieo-Méndez, J. , Acevedo-Sandoval, O.A. y Otazo-Sánchez, E.M. 2022. EVALUATION OF THREE LIGNOCELLULOSE BIOMASS MATERIALS (BARLEY HUSK, CORN COBS, AGAVE LEAVES) AS PRECURSORS OF ACTIVATED CARBON. Revista de la Facultad de Ciencias. 11, 1 (ene. 2022), 17–39. DOI:https://doi.org/10.15446/rev.fac.cienc.v11n1.97719.

ACS

(1)
Prieto-García, F.; Canales-Flores, R. A. .; Prieo-Méndez, J. .; Acevedo-Sandoval, O. A. .; Otazo-Sánchez, E. M. . EVALUATION OF THREE LIGNOCELLULOSE BIOMASS MATERIALS (BARLEY HUSK, CORN COBS, AGAVE LEAVES) AS PRECURSORS OF ACTIVATED CARBON. Rev. Fac. Cienc. 2022, 11, 17-39.

ABNT

PRIETO-GARCÍA, F.; CANALES-FLORES, R. A. .; PRIEO-MÉNDEZ, J. .; ACEVEDO-SANDOVAL, O. A. .; OTAZO-SÁNCHEZ, E. M. . EVALUATION OF THREE LIGNOCELLULOSE BIOMASS MATERIALS (BARLEY HUSK, CORN COBS, AGAVE LEAVES) AS PRECURSORS OF ACTIVATED CARBON. Revista de la Facultad de Ciencias, [S. l.], v. 11, n. 1, p. 17–39, 2022. DOI: 10.15446/rev.fac.cienc.v11n1.97719. Disponível em: https://revistas.unal.edu.co/index.php/rfc/article/view/97719. Acesso em: 16 ene. 2025.

Chicago

Prieto-García, Francisco, Roberto A. Canales-Flores, Judith Prieo-Méndez, Otilio A. Acevedo-Sandoval, y Elena M. Otazo-Sánchez. 2022. «EVALUATION OF THREE LIGNOCELLULOSE BIOMASS MATERIALS (BARLEY HUSK, CORN COBS, AGAVE LEAVES) AS PRECURSORS OF ACTIVATED CARBON». Revista De La Facultad De Ciencias 11 (1):17-39. https://doi.org/10.15446/rev.fac.cienc.v11n1.97719.

Harvard

Prieto-García, F., Canales-Flores, R. A. ., Prieo-Méndez, J. ., Acevedo-Sandoval, O. A. . y Otazo-Sánchez, E. M. . (2022) «EVALUATION OF THREE LIGNOCELLULOSE BIOMASS MATERIALS (BARLEY HUSK, CORN COBS, AGAVE LEAVES) AS PRECURSORS OF ACTIVATED CARBON», Revista de la Facultad de Ciencias, 11(1), pp. 17–39. doi: 10.15446/rev.fac.cienc.v11n1.97719.

IEEE

[1]
F. Prieto-García, R. A. . Canales-Flores, J. . Prieo-Méndez, O. A. . Acevedo-Sandoval, y E. M. . Otazo-Sánchez, «EVALUATION OF THREE LIGNOCELLULOSE BIOMASS MATERIALS (BARLEY HUSK, CORN COBS, AGAVE LEAVES) AS PRECURSORS OF ACTIVATED CARBON», Rev. Fac. Cienc., vol. 11, n.º 1, pp. 17–39, ene. 2022.

MLA

Prieto-García, F., R. A. . Canales-Flores, J. . Prieo-Méndez, O. A. . Acevedo-Sandoval, y E. M. . Otazo-Sánchez. «EVALUATION OF THREE LIGNOCELLULOSE BIOMASS MATERIALS (BARLEY HUSK, CORN COBS, AGAVE LEAVES) AS PRECURSORS OF ACTIVATED CARBON». Revista de la Facultad de Ciencias, vol. 11, n.º 1, enero de 2022, pp. 17-39, doi:10.15446/rev.fac.cienc.v11n1.97719.

Turabian

Prieto-García, Francisco, Roberto A. Canales-Flores, Judith Prieo-Méndez, Otilio A. Acevedo-Sandoval, y Elena M. Otazo-Sánchez. «EVALUATION OF THREE LIGNOCELLULOSE BIOMASS MATERIALS (BARLEY HUSK, CORN COBS, AGAVE LEAVES) AS PRECURSORS OF ACTIVATED CARBON». Revista de la Facultad de Ciencias 11, no. 1 (enero 1, 2022): 17–39. Accedido enero 16, 2025. https://revistas.unal.edu.co/index.php/rfc/article/view/97719.

Vancouver

1.
Prieto-García F, Canales-Flores RA, Prieo-Méndez J, Acevedo-Sandoval OA, Otazo-Sánchez EM. EVALUATION OF THREE LIGNOCELLULOSE BIOMASS MATERIALS (BARLEY HUSK, CORN COBS, AGAVE LEAVES) AS PRECURSORS OF ACTIVATED CARBON. Rev. Fac. Cienc. [Internet]. 1 de enero de 2022 [citado 16 de enero de 2025];11(1):17-39. Disponible en: https://revistas.unal.edu.co/index.php/rfc/article/view/97719

Descargar cita

CrossRef Cited-by

CrossRef citations6

1. Mohamad Shahrizad Pairon, Nurul Amirah Abd Rahman, Fathilah Ali, Hazleen Anuar, Jonghwan Suhr. (2022). Characterization of dioxane-based and soda-based extraction of lignin from oil palm empty fruit bunches as reinforcement in polylactic acid bio-composite. Bioresource Technology Reports, 20, p.101244. https://doi.org/10.1016/j.biteb.2022.101244.

2. Nathaly A. Díaz Molina, José A. Sosa Olivier, José R. Laines Canepa, Rudy Solis Silvan, Donato A. Figueiras Jaramillo. (2024). Evaluation of the bioenergy potential of agricultural and agroindustrial waste generated in southeastern Mexico. AIMS Energy, 12(5), p.984. https://doi.org/10.3934/energy.2024046.

3. R. Shiam Babu, K. Prasanna, P. Senthil Kumar. (2025). Assessing the suitability of agro-waste consortium in greywater treatment: A sustainable strategic exploration. Desalination and Water Treatment, 321, p.100896. https://doi.org/10.1016/j.dwt.2024.100896.

4. Alma Delia Román-Gutiérrez, Danae Duana-Ávila, Juan Hernández-Ávila, Eduardo Cerecedo-Saenz, Eleazar Salinas-Rodríguez, Adriana Rojas-León, Patricia López Perea. (2022). Reuse of Barley Straw for Handmade Paper Production. Sustainability, 14(19), p.12691. https://doi.org/10.3390/su141912691.

5. Samuel Maddirala, Sai Prabhat Tadepalli, Emisha Lakshiakanthan, Janet Joshiba Ganesan, Reya Issac, Nagaraj Basavegowda, Kwang-Hyun Baek, Dibyajyoti Haldar. (2025). Biodegradable composite films of barley fibers for food packaging applications: A review. International Journal of Biological Macromolecules, 295, p.139611. https://doi.org/10.1016/j.ijbiomac.2025.139611.

6. Adekunle O. Aliu, Oladimeji B. Olalusi, Paul O. Awoyera, Moses Kiliswa. (2023). Evaluation of pozzolanic reactivity of maize straw ash as a binder supplement in concrete. Case Studies in Construction Materials, 18, p.e01790. https://doi.org/10.1016/j.cscm.2022.e01790.

Dimensions

PlumX

Visitas a la página del resumen del artículo

680

Descargas

Los datos de descargas todavía no están disponibles.