Published

2001-01-01

Interval velocity determination by downward continuation of the traveltime function: Paraxial ray approximation

Keywords:

Ray tracing, ray theory, inverse problem, downward continuation, interval velocity (en)
Trazamiento de rayos, teoría del rayo, problema inverso, continuación hacia abajo, velocidad de intervalo (es)

Authors

  • Luis Montes Vides Universidad Nacional de Colombia

We present a method to estimate interval velocities, reflector depths and geometries in 3D models consisting of a pile of isotropic and homogeneous layers of any velocities and densities separated by smooth interfaces. The travel time of a ray reflecting on a particular interface and registered in the vicinity of a zero-offset ray is expressed by a function referred to a ray-centered coordinated system, fnnction which is estimated at the uppermost surface of the model. The reflection travel time function associated to each reflecting surface is determined at the superior surface in the neighborhood of the reference ray.


The geometry of the upper limiting surface of a particular layer and the travel time function estimated on this interface allow to calculate the interval velocity of the layer and the geometry of the bottom limiting interface. With the interval velocity and geometry of the two limiting interfaces of the layer, the travel time function of the following reflector is estimated at the bottom interface. This step simulates positioning the sources and detectors on the anterior surface of the next subjacent layer.


The procedure is repeated recursively at deeper layers getting the complete solution without a priori knowledge but the upper determined layers and the estimated travel time functions of each reflecting surface.


Computer's programs expressing the algorithm of the method were developed and tested with synthetic data, providing the interval velocities and reflector's depths with errors considered acceptable.

Presentamos un método para estimar las velocidades de intervalo, la profundidad y la geometría de los reflectores en modelos 3D que constan de un apilado de capas homogéneas e isotrópicas con velocidades y densidades arbitrarias, separadas por interfaces suaves. El tiempo de tránsito de cualquier rayo reflejado en una interfaz particular y registrado en la vecindad de un rayo zero-offset se expresa mediante una función referida a un sistema de coordenadas centrado en el rayo; tal función se estima en la superficie superior del modelo. La función tiempo de tránsito de reflexión asociada a cada superficie reflectora se determina en la superficie superior en la vecindad del rayo central.

La geometría de la superficie limitante superior de una capa particular y el tiempo de tránsito estimado sobre la misma permite calcular la velocidad de intervalo de la capa en cuestión y la geometría de la interfaz limitante inferior. Con la velocidad de intervalo y la geometría de las interfaces limitantes, se estima la función de tiempo de transite del siguiente reflector sobre la interfaz limitante inferior. En este paso se simula el posicionamiento de las fuentes y los detectores sobre la superficie anterior de la próxima capa subyacente.

El proceso se repite recursivamente en las capas mas profundas hasta obtener la solución completa sin conocimiento previo, excepto el obtenido en las capas superiores y la función tiempos de transite de cada superficie reflectora.

Se desarrollaron programas de computador que expresan el algoritmo del método y, posteriormente, se probaron con datos sintéticos, suministrando velocidades de intervalo y profundidades de los reflectores con errores considerados aceptables.

How to Cite

APA

Montes Vides, L. (2001). Interval velocity determination by downward continuation of the traveltime function: Paraxial ray approximation. Earth Sciences Research Journal, (5), 5–11. https://revistas.unal.edu.co/index.php/esrj/article/view/31288

ACM

[1]
Montes Vides, L. 2001. Interval velocity determination by downward continuation of the traveltime function: Paraxial ray approximation. Earth Sciences Research Journal. 5 (Jan. 2001), 5–11.

ACS

(1)
Montes Vides, L. Interval velocity determination by downward continuation of the traveltime function: Paraxial ray approximation. Earth sci. res. j. 2001, 5-11.

ABNT

MONTES VIDES, L. Interval velocity determination by downward continuation of the traveltime function: Paraxial ray approximation. Earth Sciences Research Journal, [S. l.], n. 5, p. 5–11, 2001. Disponível em: https://revistas.unal.edu.co/index.php/esrj/article/view/31288. Acesso em: 24 jan. 2025.

Chicago

Montes Vides, Luis. 2001. “Interval velocity determination by downward continuation of the traveltime function: Paraxial ray approximation”. Earth Sciences Research Journal, no. 5 (January):5-11. https://revistas.unal.edu.co/index.php/esrj/article/view/31288.

Harvard

Montes Vides, L. (2001) “Interval velocity determination by downward continuation of the traveltime function: Paraxial ray approximation”, Earth Sciences Research Journal, (5), pp. 5–11. Available at: https://revistas.unal.edu.co/index.php/esrj/article/view/31288 (Accessed: 24 January 2025).

IEEE

[1]
L. Montes Vides, “Interval velocity determination by downward continuation of the traveltime function: Paraxial ray approximation”, Earth sci. res. j., no. 5, pp. 5–11, Jan. 2001.

MLA

Montes Vides, L. “Interval velocity determination by downward continuation of the traveltime function: Paraxial ray approximation”. Earth Sciences Research Journal, no. 5, Jan. 2001, pp. 5-11, https://revistas.unal.edu.co/index.php/esrj/article/view/31288.

Turabian

Montes Vides, Luis. “Interval velocity determination by downward continuation of the traveltime function: Paraxial ray approximation”. Earth Sciences Research Journal, no. 5 (January 1, 2001): 5–11. Accessed January 24, 2025. https://revistas.unal.edu.co/index.php/esrj/article/view/31288.

Vancouver

1.
Montes Vides L. Interval velocity determination by downward continuation of the traveltime function: Paraxial ray approximation. Earth sci. res. j. [Internet]. 2001 Jan. 1 [cited 2025 Jan. 24];(5):5-11. Available from: https://revistas.unal.edu.co/index.php/esrj/article/view/31288

Download Citation

Article abstract page views

301

Downloads

Download data is not yet available.