ATRAPANDO PLASMONES
PLASMON TRAPPING
Keywords:
Nanoestructuras metálicas, Plasmones superficiales localizados, Límite de difracción, Manipulación de Nanopartículas (es)Metallic nanostructures, Surface Localized Plasmon, Diffraction Limit, manipulation of nanoparticles (en)
Downloads
La Nano-plasmónica es una herramienta fundamental de la nano-tecnología. Por esta razón, el enfoque principal de este artículo es enfatizar los conceptos físicos subyacentes a la aplicación particular en las pinzas ópticas. Comenzando con una breve historia de cómo nació la nano-tecnología, se explicará cómo se puede observar un objeto-nano a simple vista, a pesar de que el límite de difracción prohíbe enfocar luz en objetos más pequeños que la mitad de la longitud de onda de la luz utilizada. El uso de electrones en lugar de luz trajo un enorme avance en esta dirección y por lo tanto el interés en el estudio y control de los electrones en partículas muy pequeñas: nano-partículas metálicas, donde se ha observado un aumento dramático del campo cercano. Este efecto se explica como una interacción entre la excitación colectiva electrónica (plasmón) y la luz, que puede evitar la prohibición de ver por debajo del límite de difracción y así estudiar objetos extraordinariamente pequeños. Dos aplicaciones interesantes se presentan relacionadas con los nano-plasmones: el efecto láser debido a los altos campos eléctricos que implican grandes propiedades de amplificación y en el otro lado su capacidad para crear nano-cavidades, donde las pequeñísimas fuerzas presentes en los nano-sistemas son capaces de manipular nano-objetos como moléculas y células.
Nano-plasmonics is a fundamental tool of Nanotechnology. For this reason the main focus in this article is to emphasize the physical concepts underlying the particular case of the optical tweezers. Starting with a short history of how Nanotechnology was born, will explain how can be observed a nano-object with naked eyes in spite of the diffraction limit that forbids focusing light in objects smaller than one half the wavelength of used light. The use of electrons instead of light brought a enormous step in this direction and therefore the interest in studying and controlling electrons in very small particles: nanoparticles, specially metallic ones, where a dramatic increase of the near field has been observed. This effect is explained as an interaction between the electronic collective excitation in the nanoparticle (plasmon) and light, which can avoid the diffraction limit prohibition and allows to see and to study extraordinary small object. Two interesting applications are presented related with the nano-plasmons such as laser effect due to the high near electric fields that implies great amplification properties and on the other side their ability to create nano-cavities, where the tiny forces present in the nano-systems are able to manipulate very small objects like molecules and cells.
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
Article abstract page views
Downloads
License
Those authors who have publications with this journal, accept the following terms:
a. The authors will retain their copyright and will guarantee the publication of the first publication of their work, which will be subject to the Attribution-SinDerivar 4.0 International Creative Commons Attribution License that permits redistribution, commercial or non-commercial, As long as the Work circulates intact and unchanged, where it indicates its author and its first publication in this magazine.
b. Authors are encouraged to disseminate their work through the Internet (eg in institutional telematic files or on their website) before and during the sending process, which can produce interesting exchanges and increase appointments of the published work.