Doses and timing of nitrogen application on spinach productivity
Dosis y momentos de aplicación de nitrógeno en la productividad de las espinacas
DOI:
https://doi.org/10.15446/acag.v72n2.100895Palabras clave:
Nitrogen fertilization, plant nutrition, Tetragonia tetragonoides Pall., vegetables (en)hortalizas, fertilización nitrogenada, nutrición vegetal, Tetragonia tetragonioides Pall. (es)
Descargas
Spinach has several relevant properties, great nutritional importance, and an affordable price, being a significant subject in various studies. However, the current literature is scarce regarding the production and nutritional requirements of this crop, with nitrogen being the element mostly required. The objective of this study was to evaluate the effect of nitrogen doses and application timings on the nutrition and productivity of spinach. The experimental design was a randomized block in a 6 x 4 factorial scheme, consisting of the combination of six N doses (0, 30, 60, 90, 120, and 150 kg ha-1) and four application timings (planting (PT), 15, 30, and 45 days after planting (DAP)) of urea nitrogen fertilizer, with four replications. The analyzed variables were chlorophyll content (CF), plant height (AP), fresh mass (MF), dry mass (MS), nitrogen content (TN), and nitrogen accumulation (AN). The data obtained were subjected to analysis of variance (F test), and the means obtained based on the N application timing were compared by Tukey's test at a 5 % probability level. For nitrogen doses, regression analysis was performed. At 15 DAP, the application of 90 kg ha-1 of nitrogen stood out, increasing productivity and obtaining 50.38 kg ha-1 of spinach. However, the productivity achieved in absence of nitrogen topdressing fertilization was satisfactory. Therefore, under conditions like those of the conducted study, it is possible to achieve good productivity and nutrition values without resorting to topdressing nitrogen fertilization, thereby emphasizing the advantage of reduced production costs.
La espinaca tiene varias propiedades relevantes, gran importancia nutricional y precio accesible. Su importancia ha sido objeto de varios estudios, pero la literatura actual es escasa con relación a la producción y necesidades nutricionales de este cultivo, siendo el nitrógeno el elemento que requiere en mayor cantidad. El objetivo de este estudio fue evaluar el efecto de las dosis y tiempos de aplicación de nitrógeno en la nutrición y productividad de la espinaca. El diseño experimental fue de bloques al azar, en esquema factorial 6 x 4, que consistió en la combinación de seis dosis de N (0, 30, 60, 90, 120 y 150 kg ha-1) y cuatro tiempos de aplicación (trasplante (PT), 15, 30 y 45 días después del trasplante (DDT)) de fertilizante nitrogenado de urea, con cuatro repeticiones. Las variables analizadas fueron contenido de clorofila (CF), altura de la planta (AP), masa fresca (MF), masa seca (MS), contenido de nitrógeno (TN) y acumulación de nitrógeno (AN). Los datos obtenidos se sometieron a análisis de varianza (prueba F) y los promedios obtenidos en función del tiempo de aplicación de N fueron comparados por la prueba de Tukey al 5 % de probabilidad; para dosis de nitrógeno se realizó un análisis de regresión. A los 15 DDT se destacó la aplicación de 90 kg ha-1 de nitrógeno, aumentando la productividad y obteniendo 50.38 kg ha-1 de espinaca. Sin embargo, la productividad en ausencia de fertilización nitrogenada en cobertura fue satisfactoria. Así, se sugiere que, bajo condiciones similares a las del estudio, se puede prescindir del fertilizante nitrogenado en el cultivo de espinacas, obteniendo buena productividad y valores nutricionales, y resaltando la ventaja de reducir los costos de producción.
Referencias
Alvares, C. A.; Stape, J. L.; Sentelhas, P. C.; Gonçalves, J. L. M. and Sparovek, G. (2013). Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift, Stuttgart, 22(6), 711-728. http://143.107.18.37/material/mftandra2/ACA0225/Alvares_etal_Koppen_climate_classBrazil_MeteoZei_2014.pdf
Barreto, C. R.; Zanuzo, M. R.; Wobeto, C. and Rosa, C. C. B. (2013). Produtividade e Qualidade da Beterraba em Função da Aplicação de Doses e Nitrogênio. Revista Brasileira Multidisciplinar, 16(1), 145-158. https://doi.org/10.25061/2527-2675/ReBraM/2013.v16i1.52
Bekmirzaev, G.; Beltrao, J. and Ouddane, B. (2019). Effect of irrigation water regimes on the yield of Tetragonia tetragonioides. Agriculture, 9(1), 22. https://doi.org/10.3390/agriculture9010022
Biscaro, G. A.; Missio, C.; Silveira, B. L. R.; Motomiya, A. V. de A.; Gomes, E. P. and Takara, J. G. (2013). Produtividade e análise econômica da cultura do espinafre em função de níveis de fertirrigação nitrogenada. Irriga, 18(4), 587-596. https://doi.org/10.15809/irriga.2013v18n4p587
Canali, S.; Diacono, M.; Ciaccia, C.; Masetti, O.; Tittarelli, F. and Montemurro, F. (2014). Alternative strategies for nitrogen fertilization of overwinter processing spinach (Spinacia oleracea L.) in Southern Italy. European Journal of Agronomy, 54, 47-53. https://doi.org/10.1016/j.eja.2013.11.013
Fernandes, P. H.; Porto, D. W. B.; França, A. C.; Franco, M. H. R. and Machado, C. M. M. (2020). Uso de fertilizantes organominerais fosfatados no cultivo da alface e de milho em sucessão. Brazilian Journal of Development, 6(6), 37907-37922. https://doi.org/10.34117/bjdv6n6-365
Ferreira, D. F. (2019). SISVAR: A computer analysis system for fixed effects split plot type designs. Brazilian Journal of Biometrics, 37(4), 529-535. https://doi.org/10.28951/rbb.v37i4.450
Filgueira, F. A. R. (2008). Novo manual de olericultura: agrotecnologia moderna na produção e comercialização de hortaliças. 3rd Ed. Universidade Federal de Viçosa. 421 p.
Freitas, G. A.; Santos, L. B.; Siebeneichler, S. C.; Nascimento, I. R.; Silva, R. R. and Capone, A. (2010). Residues of cattle slaughterhouse effluent as an alternative fertilizer for the production of rocket. Applied Research e Agrotechnology, 3(2), 45-51. https://revistas.unicentro.br/index.php/repaa/article/view/824
Frerichs, C.; Glied-Olsen, S.; De Neve, S.; Broll, G. and Daum, D. (2022). Crop residue management strategies to reduce nitrogen losses during the winter leaching period after autumn spinach harvest. Agronomy, 12(3), 653. https://doi.org/10.3390/agronomy12030653
Goodarzi, F.; Delshad, M.; Soltani, F. and Mansouri, H. (2020). Changes in some growth and yield indices of Spinach (Spinacia oleracea L.) under nitrogen fertilization and plant density. Iranian Journal of Field Crop Science, 51(2), 183-198. https://doi.org/10.22059/IJFCS.2019.279354.654601
Grangeiro, L. C.; Negreiros, M. Z.; Souza, B. S.; Azevedo, P. E.; Oliveira, S. L. and Medeiros, M. A. (2007). Acúmulo e exportação de nutrientes em beterraba. Ciência e Agrotecnologia, 31(2), 267-273. https://www.scielo.br/j/cagro/a/GPj4Q8XGyNjHDWLkDL5WhSH/?format=pdf&lang=pt
Hashimi, R.; Afghani, A. K.; Karimi, M. R. and Habibi, H. K. (2019). Effect of organic and inorganic fertilizers levels on spinach (Spinacia oleracea L.) production and soil properties in Khost Province, Afghanistan. International Journal of Applied research, 5(7), 83–87. https://www.allresearchjournal.com/archives/?year=2019&vol=5&issue=7&part=B&ArticleId=5931
Jasim, E. A. A. and Esho, K. B. (2022). Effects of nitrogen doses and organic Alga 600 fertilizer on spinach. Spinacia oleracea growth and yield. Iranian Journal of Ichthyology, 9, 127–132. https://ijichthyol.org/index.php/iji/article/view/789
Kjeldahl, J. (1883). Neue Methode zur Bestimmung des Stickstoffs in organischen Körpern. Zeitschrift für Analytische Chemie, 22, 366–382. https://doi.org/10.1007/BF01338151
Massa, D.; Incrocci, L.; Botrini, L.; Carmassi, G.; Diara, C.; Paoli, P. D.; Incrocci, G.; Maggini, R. and Pardossi, A. (2018). Modeling plant yield and quality response of fresh-market spinach (Spinacia oleracea L.) to mineral nitrogen availability in the root zone. Italian Journal of Agronomy, 13(3), 248-259. https://doi.org/10.4081/ija.2018.1120
Oliveira, F. C.; Geisenhoff, L. O.; Almeida, A. C. S.; Junior, J. A. L.; Niz, A. I. S. and Barbiero, D. F. (2016). Produtividade do brócolis de cabeça sob diferentes doses de adubação nitrogenada. Agrarian, 9(34), 326-333. https://ojs.ufgd.edu.br/index.php/agrarian/article/view/4390
Padilla, F. M.; Farneselli, M.; Gianquinto, G.; Tei, F. and Thompson, R. B. (2020). Monitoring nitrogen status of vegetable crops and soils for optimal nitrogen management. Agricultural Water Management, 241, 106356. https://doi.org/10.1016/j.agwat.2020.106356
Ramezanifar, H.; Yazdanpanah, N.; Golkar, H. Y. H.; Tavousi, M. and Mahmoodabadi, M. (2022). Spinach growth regulation due to interactive salinity, water, and nitrogen stresses. Journal of Plant Growth Regulation, 41(4), 1654-1671. https://doi.org/10.1007/s00344-021-10407-1
Santos, H. G.; Jacomine, P. K. T.; Anjos, L. H. C.; Oliveira, V. A.; Lumbreras, J. F.; Coelho, M. R.; Almeida, J. A.; Filho, J. C. A.; Oliveira, J. B. and Cunha, T. J. F. (2018). Sistema Brasileiro de Classificação de Solos. 5th Ed. Embrapa. http://www.infoteca.cnptia.embrapa.br/infoteca/handle/doc/1094003
Selim, M. M. (2020). Introduction to the integrated nutrient management strategies and their contribution to yield and soil properties. International Journal of Agronomy, 2020, 2821678. https://doi.org/10.1155/2020/2821678
Shormin, T. and Kibria, M. G. (2018). Effects of nitrogen from different inorganic fertilizers on growth and yield of Indian spinach (Basella Alba L.). Journal of Pharmacy and Biological Sciences, 13(5), 43-48. https://www.iosrjournals.org/iosr-jpbs/papers/Vol13-issue5/Version-1/H1305014348.pdf
Silva, G. F.; Mapeli, N. C.; Cremon, C.; Camilo, I. C. V. S. and Silva, A. N. (2015). Influência de diferentes fontes de adubos no desenvolvimento e no teor de betacaroteno em espinafre Cadernos de Agroecologia, 10(3), 1-6. https://revistas.aba-agroecologia.org.br/cad/article/view/17480
Singh, B. (2018). Are nitrogen fertilizers deleterious to soil health? Agronomy, 8(4), 48. https://doi.org/10.3390/agronomy8040048
Soares, C. D. F.; Silva, P. P. M.; Pessoa, C. O.; Spoto, M. H. F. and Kluge, R. A. (2016). Processamento mínimo de espinafre Nova Zelândia. Revista Iberoamericana de Tecnología Postcosecha, 17(2), 296-306. https://www.redalyc.org/journal/813/81349041017/html/
Thapa, P.; Shrestha, R. K.; Kafle, K. and Shrestha, J. (2021). Effect of different levels of nitrogen and farmyard manure on the growth and yield of spinach (Spinacia oleracea L.). Journal of Agricultural Science, 32(2), 335-340. https://doi.org/10.15159/jas.21.21
Thomaz, M. C.; Haag, H. P.; Oliveira, G. D. and Sarruge, J. R. (1975). Nutrição mineral de hortaliças: XXVI - absorção de macro e micronutrientes pelo espinafre (Tetragonia expansa Murr.): Absorption of macro and micronutrients. Anais da Escola Superior de Agricultura Luiz de Queiroz, 32, 233-252. https://doi.org/10.1590/S0071-12761975000100018
Zaman, Q.; Hamid, F. S.; Islam, S.; Ahmad, F. and Ahmad, N. (2018). Impact of various levels of nitrogen and phosphorus on growth and yield of spinach (Spinacea oleracea L.) under conditions of Mansehra (Pakistan). Open Academic Journal of Advanced Science and Technology, 2(1), 5-8. https://doi.org/10.33094/5.2017.2018.21.5.8
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
Licencia
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Política sobre Derechos de autor:Los autores que publican en la revista se acogen al código de licencia creative commons 4.0 de atribución, no comercial, sin derivados.
Es decir, que aún siendo la Revista Acta Agronómica de acceso libre, los usuarios pueden descargar la información contenida en ella, pero deben darle atribución o reconocimiento de propiedad intelectual, deben usarlo tal como está, sin derivación alguna y no debe ser usado con fines comerciales.