Efecto del fosfito sobre el crecimiento y la concentración foliar de nutrientes de Solanum licopersicum L.
Effect of phosphite on growth and foliar nutrient concentration of Solanum licopersicum L.
DOI:
https://doi.org/10.15446/acag.v71n3.105925Palabras clave:
Arena, Fertilización, Fósforo, Nutrición, Toxicidad (es)sand, fertilization, phosphorus, nutrition, toxicity (en)
Descargas
El fosfito (PO33--; Phi) es una forma reducida del fosfato (PO44-; Pi) utilizado en agricultura como fungicida, fertilizante y bioestimulador. En este estudio se valora la capacidad fertilizante del Phi en un cultivo hidropónico de tomates (Solanum licopersicum L.) en sustrato inerte y con iluminación artificial. Se utilizó un diseño experimental de bloques completos al azar con seis tratamientos y cinco repeticiones. Los tratamientos se asignaron siguiendo un modelo factorial (3x2) con tres niveles de Pi (0.05, 1.00 y 2.00 mmol L‑1) y presencia (1.00 mmol L‑1) o ausencia de Phi. La existencia de diferencias significativas entre variables se estableció mediante ANOVA y, en su caso, se aplicó el test de Duncan (P< 0.05) para la separación de medias. El peso seco medio (parte aérea) de las plántulas cultivadas con 2 mmol L-1 de Pi fue superior (4.40 g) al de las cultivadas con 0.05 mmol L-1 de Pi (2.24 g) (P< 0.05), y el de las cultivadas sin Phi (0.00 mmol L-1) fue superior (3.93 g) al de las cultivadas con 1 mmol L-1 de Phi (2.80 g) (P< 0.05). La concentración de Pi en la solución nutritiva influyó sobre la concentración foliar de P, Zn, Cu y Mn, y la de Phi influyó sobre la de P. La interacción Pi x Phi fue significativa para los niveles foliares de P y Zn. Los resultados indican que las plántulas tomaron P en forma de Pi y Phi, pero que únicamente el P suministrado como Pi favoreció su crecimiento.
Phosphite (PO33-; Phi) is a reduced form of phosphate (PO44-; Pi)
used in agriculture as a fungicide, fertilizer and biostimulator. In this study, the fertilizing capacity of Phi was assessed in a hydroponic tomato crop (Solanum licopersicum L.) with different levels of Pi, in an inert substrate and with artificial lighting. A randomized complete block experimental design with six treatments and five replications was used. The treatments were assigned following a factorial model (3 x 2) with three levels of Pi (0.05, 1.00 and 2.00 mmol L-1) and presence (1.00 mmol L-1) or absence of Phi. The existence of significant differences between the variables was established by an ANOVA test and, when appropriate, Duncan's Test (P< 0.05) was applied to separate the means. The average dry weight (aerial part) of the seedlings cultivated with 2 mmol L-1 of Pi was higher (4.40 g) than that of those cultivated with 0.05 mmol L-1 of Pi (2.24 g) (P< 0.05), and the average dry weight of the seedlings cultivated without Phi (0.00 mmol L‑1) was higher (3.93 g) than that of those cultivated with 1 mmol L‑1 of Phi (2.80 g) (P< 0.05). The concentration of Pi in the nutrient solution influenced the foliar concentration of P, Zn, Cu and Mn, and the concentration of Phi influenced that of P. The interaction Pi x Phi was significant for the foliar levels of P and Zn. The results indicate that the seedlings took Pi and Phi, but only the P supplied as Pi favored their growth.
Referencias
Achary, V. M. M.; Ram, B.; Manna, M.; Datta, D.; Bhatt, A.; Reddy, M. K. y Agrawal, P. K. (2017). Phosphite: A novel P fertilizer for weed management and pathogen control. Plant Biotechnology Journal, 15(12), 1493-1508. https://doi.org/10.1111/pbi.12803
Araujo, J. L.; Ávila, F. W. de y Faquin, V. (2016). Phosphite and phosphate in the accumulation and translocation of nutrients in common bean. Pesquisa Agropecuária Tropical, 46(4), 357-366. https://doi.org/10.1590/1983-40632016v4640810
Ávila, F. W.; Faquin, V.; Ramos, S. J.; Pinheiro, G. L.; Marques, D. J.; da Silva Lobato, A. K.; Ferreira de Oliveira-Neto, C. y Ávila, P. A. (2012). Effects of phosphite and phosphate supply in a weathered tropical soil on biomass yield, phosphorus status and nutrient concentrations in common bean. Journal of Food, Agriculture and Environment, 10(2), 312-317. https://www.wflpublisher.com/Abstract/2972
Basirat, M.; Malboobi, M. A.; Mousavi, A.; Asgharzadeh, A. y Samavat, S. (2011). Effects of phosphorous supply on growth, phosphate distribution and expression of transporter genes in tomato plants. Australian Journal of Crop Science, 5(5). https://www.cropj.com/basirat_5_5_2011_537_543.pdf
Cole, J. C.; Smith, M. W.; Penn, C. J.; Cheary, B. S. y Conaghan, K. J. (2016). Nitrogen, phosphorus, calcium, and magnesium applied individually or as a slow release or controlled release fertilizer increase growth and yield and affect macronutrient and micronutrient concentration and content of field-grown tomato plants. Scientia Horticulturae, 211, 420-430. https://doi.org/10.1016/j.scienta.2016.09.028
Cordell, D.; Drangert, J. -O. y White, S. (2009). The story of phosphorus: Global food security and food for thought. Global Environmental Change, 19(2), 292-305. https://doi.org/10.1016/j.gloenvcha.2008.10.009
Drissi, S.; Houssa, A.; Bamouh, A.; Coquant, J. -M. y Benbella, M. (2015). Effect of zinc-phosphorus interaction on corn silage grown on sandy soil. Agriculture, 5(4), 1047-1059. https://doi.org/10.3390/agriculture5041047
Förster, H.; Adaskaveg, J. E.; Kim, D. H. y Stanghellini, M. E. (1998). Effect of phosphite on tomato and pepper plants and on susceptibility of pepper to phytophthora root and crown rot in hydroponic culture. Plant Disease, 82(10), 1165-1170. https://doi.org/10.1094/PDIS.1998.82.10.1165
Habibzadeh, Y. y Moosavi, Y. (2014). Effect of phosphorus levels on growth of tomato plants in presence or absence of arbuscular mycorrhizal fungi (Glomus mosseae and Glomus intraradices). Peak Journal of Agricultural Science, 2(4), 51-56. https://www.researchgate.net/publication/316665704_Effect_of_phosphorus_levels_on_growth_of_tomato_plants_in_presence_or_absence_of_Arbuscular_mycorrhizal_fungi_Glomus_mosseae_and_Glomus_intraradices
Hoagland, D. R. y Arnon, D. I. (1950). The water-culture method for growing plants without soil. Berkeley: University of California. http://archive.org/details/watercultureme3450hoag
Jones, J. B.; Wolf, B. y Mills, H. A. (1991). Plant analysis handbook: A practical sampling, preparation, analysis, and interpretation guide. Athens, USA: Micro-Macro Publishing. http://openlibrary.org/b/OL18002303M/Plant_analysis_handbook_a_practical_sampling_preparation_analysis_and_interpretation_guide
Kabata-Pendias, A. (2010). Trace elements in soils and plants. Boca Ratón: CRC Press. https://doi.org/10.1201/b10158
Kleiber, T. (2015). Effect of manganese on nutrient content in tomato (Lycopersicon esculentum Mill.) leaves. Journal of Elementology, 20, 115-126. https://doi.org/10.5601/jelem.2014.19.2.580
López-Arredondo, D. L. y Herrera-Estrella, L. (2012). Engineering phosphorus metabolism in plants to produce a dual fertilization and weed control system. Nature Biotechnology, 30(9), 889-893. https://doi.org/10.1038/nbt.2346
Martins, B.; Candian, J.; Lima, P.; Corrêa, C.; Gouveia, A.; Silva, J.; Santana, F. y Cardoso, A. (2017). Effect of phosphorus (P) doses on tomato seedlings production in poor nutrients substrates and its importance on fruit yield. Australian Journal of Crop Science, 11, 567-572. https://doi.org/10.21475/ajcs.17.11.05.p379
Moor, U.; Põldma, P.; Tõnutare, T.; Karp, K.; Starast, M. y Vool, E. (2009). Effect of phosphite fertilization on growth, yield and fruit composition of strawberries. Scientia Horticulturae, 119(3), 264-269. https://doi.org/10.1016/j.scienta.2008.08.005
Mouël, C. y Forslund, A. (2017). How can we feed the world in 2050? A review of the responses from global scenario studies. European Review of Agricultural Economics, 44. https://doi.org/10.1093/erae/jbx006
Orbović, V.; Syvertsen, J. P.; Bright, D.; Clief, D. L. V. y Graham, J. H. (2008). Citrus seedling growth and susceptibility to root rot as affected by phosphite and phosphate. Journal of Plant Nutrition, 31(4), 774-787. https://doi.org/10.1080/01904160801928448
Raghothama, K. (2000). Phosphate transport and signaling. Current Opinion in Plant Biology, 3(3), 182-187. https://www.sciencedirect.com/science/article/pii/S1369526600800631
Ramallo, A. C.; Cerioni, L.; Olmedo, G. M.; Volentini, S. I.; Ramallo, J. y Rapisarda, V. A. (2019). Control of Phytophthora brown rot of lemons by pre- and postharvest applications of potassium phosphite. European Journal of Plant Pathology, 154(4), 975-982. https://doi.org/10.1007/s10658-019-01717-y
Rodríguez-Martin, J. A.; Carbonell, G.; Torrijos, M. y Porcel Cots, M. Á. (2016). Uptake and metal transfer from biosolid-amended soil to tomato (Solanum Lycopersicum Mill L.) Plants. Journal of Plant Chemistry and Ecophysiology, 1, 1-8. https://austinpublishinggroup.com/jpceonline/fulltext/jpce-v1-id1002.php#References
Schachtman, D. P.; Reid, R. J. y Ayling, S. M. (1998). Phosphorus uptake by plants: From soil to cell. Plant Physiol., 116(2), 447-453. https://doi.org/10.1104/pp.116.2.447
Snyder, R. G. (1992). Greenhouse tomato handbook. Mississippi: Mississippi State University. https://agris.fao.org/agris-search/search.do?recordID=US9322347
Soltangheisi, A.; A Rahman, Z.; Ishak, C.; Musa, M. y Zakikhani, H. (2014). Interaction effects of phosphorus and zinc on their uptake and 32P absorption and translocation in sweet corn (Zea mays var. Saccharata) grown in a tropical soil. Asian Journal of Plant Sciences, 13, 129-135. https://doi.org/10.3923/ajps.2014.129.135
Thao, H. T. B. y Yamakawa, T. (2009). Phosphite (phosphorous acid): Fungicide, fertilizer or bio-stimulator? Soil Science and Plant Nutrition, 55(2), 228-234. https://doi.org/10.1111/j.1747-0765.2009.00365.x
Varadarajan, D. K.; Karthikeyan, A. S.; Matilda, P. D. y Raghothama, K. G. (2002). Phosphite, an analog of phosphate, suppresses the coordinated expression of genes under phosphate starvation. Plant Physiology, 129(3), 1232-1240. https://doi.org/10.1104/pp.010835
Yang, X. J. y Finnegan, P. M. (2010). Regulation of phosphate starvation responses in higher plants. Annals of Botany, 105(4), 513-526. https://doi.org/10.1093/aob/mcq015
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
Licencia
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Política sobre Derechos de autor:Los autores que publican en la revista se acogen al código de licencia creative commons 4.0 de atribución, no comercial, sin derivados.
Es decir, que aún siendo la Revista Acta Agronómica de acceso libre, los usuarios pueden descargar la información contenida en ella, pero deben darle atribución o reconocimiento de propiedad intelectual, deben usarlo tal como está, sin derivación alguna y no debe ser usado con fines comerciales.