Publicado

2024-08-13

Exploración del microbioma intestinal de larvas de Zophobas morio (Coleoptera: Tenebrionidae) asociado a una dieta de poliestireno expandido

Exploration of the intestinal microbiome of Zophobas morio larvae (Coleoptera: Tenebrionidae) associated with an expanded polystyrene diet

DOI:

https://doi.org/10.15446/acag.v72n3.112558

Palabras clave:

coleópteros, dieta, metabarcoding, poliestireno, Pseudarthrobacter (es)
coleoptera, diet, metabarcoding, polystyrene, Pseudarthrobacter (en)

Descargas

Autores/as

El poliestireno expandido (EPS) es un polímero sintético de uso común en diferentes industrias y posee una estabilidad molecular que le permite permanecer inmodificable por cientos de años generando un impacto negativo sobre el medio ambiente. Se ha reportado que larvas de coleópteros de la familia Tenebrionidae pueden biodegradarlo gracias a enzimas producidas por su microbiota intestinal. En esta investigación se caracterizó preliminarmente la microbioma intestinal de larvas de Zophobas morio alimentadas con poliestireno (PS) y avena, empleando metabarcoding, mediante secuenciación Illumina Miseq de la región V3-4 del gen 16s del ARNr. Con los resultados de la secuenciación se analizó la composición taxonómica y la abundancia relativa de las bacterias, de lo cual se obtuvo que el género Spiroplasma fue el más abundante en las dietas de PS y avena, y no se encontraron diferencias en los análisis de diversidad alfa. Sin embargo, se destacó el aumento del género Pseudarthrobacter en el microbioma de larvas alimentadas con poliestireno expandido y miembros de la familia Enterobacteriaceae sin asignación taxonómica a nivel de género. La identificación de microorganismos posiblemente asociados a una dieta de poliestireno es el punto de partida de ensayos de caracterización, aislamiento y biorremediación, para la degradación de este material; estos ensayos, además, pueden extenderse a otro tipo de plásticos.

Expanded polystyrene (EPS) is a synthetic polymer commonly used in different industries. It has a molecular stability that allows it to remain unchanged for hundreds of years, negatively impacting the environment. It has been reported that beetle larvae of the Tenebrionidae family can biodegrade it thanks to enzymes produced by their intestinal microbiota. In this research, the intestinal microbiome of Zophobas morio larvae fed with polystyrene (PS) and oat was characterized using metabarcoding, through Illumina Miseq sequencing of the V3-4 region of the 16s rRNA gene. With the results of the sequencing, the taxonomic composition and relative abundance of the bacteria were analyzed, obtaining that the Spiroplasma genus was the most abundant for both PS and oat diets; no differences were found in the alpha diversity analyses. However, the increase in the microbiome of expanded polystyrene-fed larvae of the genus Pseudarthrobacter and members of the family Enterobacteriaceae without taxonomic assignment at the genus level was highlighted. Microorganism identification possibly associated with the polystyrene diet is the reference for characterization, isolation, and bioremediation tests for the degradation of this material, these tests can be extended to other plastics.

Referencias

Andrady, A. L. y Neal, M. A. (2009). Applications and societal benefits of plastics. Philosophical Transactions of the Royal Society B: Biological Sciences, 364, 1977-1984. https://doi.org/10.1098/RSTB.2008.0304

Arunrattiyakorn, P.; Ponprateep, S.; Kaennonsang, N.; Charapok, Y.; Punphuet, Y.; Krajangsang, S.; Tangteerawatana, P. y Limtrakul, A. (2022). Biodegradation of polystyrene by three bacterial strains isolated from the gut of Superworms (Zophobas atratus larvae). Journal of Applied Microbiology, 132(4), 2823-2831. https://doi.org/10.1111/JAM.15474

Beule, L. y Karlovsky, P. (2020). Improved normalization of species count data in ecology by scaling with ranked subsampling (SRS): Application to microbial communities. PeerJ, 8, e9593. https://doi.org/10.7717/peerj.9593

Bolyen, E.; Rideout, J. R.; Dillon, M. R.; Bokulich, N. A.; Abnet, C. C.; Al-Ghalith, G. A.; Alexander, H.; Alm, E. J.; Arumugam, M.; Asnicar, F., Bai, Y.; Bisanz, J. E.; Bittinger, K.; Brejnrod, A.; Brislawn, C. J.; Brown, C. T.; Callahan, B. J.; Caraballo-Rodríguez, A. M.; Chase, J. … y Caporaso, J. G. (2019). Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nature Biotechnology, 37(8), 852-857. https://doi.org/10.1038/s41587-019-0209-9

Callahan, B. J.; McMurdie, P. J.; Rosen, M. J.; Han, A. W.; Johnson, A. J. A. y Holmes, S. P. (2016). DADA2: High-resolution sample inference from Illumina amplicon data. Nature Methods, 13(7), 581-583. https://doi.org/10.1038/nmeth.3869

Choi, I. H.; Lee, J. H. y Chung, T. H. (2020). Polystyrene biodegradation using Zophobas morio. Journal of Entomological Research, 44(3), 475-478. https://doi.org/10.5958/0974-4576.2020.00079.1

Chung, J. H.; Yeon, J.; Seong, H. J.; An, S. H.; Kim, D. Y.; Yoon, Y.; Weon, H. Y.; Kim, J. J. y Ahn, J. H. (2022). Distinct bacterial and fungal communities colonizing waste plastic films buried for more than 20 years in four landfill sites in Korea. Journal of Microbiology Biotechnology, 32(12), 1561-1572. https://doi.org/10.4014/JMB.2206.06021

Danso, D.; Chow, J. y Streita, W. R. (2019). Plastics: Environmental and biotechnological perspectives on microbial degradation. Applied and Environmental Microbiology, 85(19). https://doi.org/10.1128/AEM.01095-19

Geyer, R.; Jambeck, J. R. y Law, K. L. (2017). Production, use, and fate of all plastics ever made. Science Advances, 3(7). DOI: 10.1126/sciadv.1700782

Gilbert, J. A. y Dupont, C. L. (2011). Microbial metagenomics: Beyond the genome. Annual Review of Marine Science, 3, 347-371. https://doi.org/10.1146/annurev-marine-120709-142811

Jambeck, J. R.; Geyer, R.; Wilcox, C.; Siegler, T. R.; Perryman, M.; Andrady, A.; Narayan, R. y Law, K. L. (2015). Plastic waste inputs from land into the ocean. Science, 347(6223), 768-771. DOI: 10.1126/science.1260352

Jiang, S.; Su, T.; Zhao, J.; Wang, Z.; Ferri, J. M.; Fombuena Borràs, V.; Fernando, M. y Carrasco, A. (2021). Biodegradation of polystyrene by Tenebrio molitor, Galleria mellonella, and Zophobas atratus Larvae and comparison of their degradation effects. Polymers 2021, 13(20), 3539. https://doi.org/10.3390/POLYM13203539

Kim, H. R.; Lee, H. M.; Yu, H. C.; Jeon, E.; Lee, S.; Li, J. y Kim, D. H. (2020). Biodegradation of polystyrene by Pseudomonas sp. isolated from the gut of guperworms (Larvae of Zophobas atratus). Environmental Science and Technology, 54(11), 6987-6996. https://doi.org/10.1021/acs.est.0c01495

Kotova, I. B.; Taktarova, Y. V.; Tsavkelova, E. A.; Egorova, M. A.; Bubnov, I. A.; Malakhova, D. V. ... y Bonch-Osmolovskaya, E. A. (2021). Microbial degradation of plastics and approaches to make it more efficient. Microbiology, 90, 671-701. https://doi.org/10.1134/S0026261721060084

Liu, R.; Zhao, S.; Zhang, B.; Li, G.; Fu, X.; Yan, P. y Shao, Z. (2023). Biodegradation of polystyrene (PS) by marine bacteria in mangrove ecosystem. Journal of Hazardous Materials, 442, 130056. https://doi.org/10.1016/j.jhazmat.2022.130056

Lorenz, P. y Eck, J. (2005). Metagenomics and industrial applications. Nature Reviews. Microbiology, 3(6), 510-516. https://doi.org/10.1038/nrmicro1161

Lovley, D. R. (2003). Cleaning up with genomics: Applying molecular biology to bioremediation. Nature Reviews Microbiology, 1(1), 35-44. https://doi.org/10.1038/nrmicro731

Love, M. I.; Huber, W. y Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology, 15(12), 1-21. 10.1186/s13059-014-0550-8

Luo, L.; Wang, Y.; Guo, H.; Yang, Y.; Qi, N.; Zhao, X.; Gao, S. y Zhou, A. (2021). Biodegradation of foam plastics by Zophobas atratus larvae (Coleoptera: Tenebrionidae) associated with changes of gut digestive enzymes activities and microbiome. Chemosphere, 282, 131006. https://doi.org/10.1016/J.CHEMOSPHERE.2021.131006

Mamun, A. al; Prasetya, T. A. E.; Dewi, I. R. y Ahmad, M. (2023). Microplastics in human food chains: Food becoming a threat to health safety. Science of The Total Environment, 858(1), 159834. https://doi.org/10.1016/J.SCITOTENV.2022.159834

Margalef, R. (1972). Homage to Evelyn Hutchinson, or why there is an upper limit to diversity. Transactions of the Connecticut Academy of Arts and Sciences, 44, 211-235. https://digital.csic.es/handle/10261/166281

Marrero-Coto, J.; Díaz-Valdivia, A. y Coto-Pérez, O. (2010). Mecanismos moleculares de resistencia a metales pesados en las bacterias y sus aplicaciones en la biorremediación. Revista CENIC Ciencias Biológicas, 41(1), 67-78. https://revista.cnic.edu.cu/index.php/RevBiol/article/view/609/493

Meng, T. K.; Kassim, A. S. B. M.; Razak, A. H. B. A. y Fauzi, N. A. B. M. (2021). Bacillus megaterium: A potential and an efficient bio-degrader of polystyrene. Brazilian Archives of Biology and Technology, 64, 1-12. https://doi.org/10.1590/1678-4324-2021190321

ONU. (2018). Plásticos de un solo uso: una hoja de ruta para la Sostenibilidad. Programa de las Naciones Unidas para el Medio Ambiente. https://wedocs.unep.org/bitstream/handle/20.500.11822/25496/singleUsePlastic_SP.pdf?sequence=2&isAllowed=y

Peng, B. Y.; Su, Y.; Chen, Z.; Chen, J.; Zhou, X.; Benbow, M. E.; Criddle, C. S.; Wu, W. M. y Zhang, Y. (2019). Biodegradation of polystyrene by dark (Tenebrio obscurus) and yellow (Tenebrio molitor) mealworms (Coleoptera: Tenebrionidae). Environmental Science and Technology, 53(9), 5256-5265. https://doi.org/10.1021/ACS.EST.8B06963/SUPPL_FILE/ES8B06963_SI_001.PDF

Peng, B. Y.; Sun, Y.; Wu, Z.; Chen, J.; Shen, Z.; Zhou, X.; Wu, W. M. y Zhang, Y. (2022). Biodegradation of polystyrene and low-density polyethylene by Zophobas atratus larvae: Fragmentation into microplastics, gut microbiota shift, and microbial functional enzymes. Journal of Cleaner Production, 367, 132987. https://doi.org/10.1016/J.JCLEPRO.2022.132987

Plastics Europe. (2022). Plásticos. Situación en 2022. https://plasticseurope.org/es/knowledge-hub/plasticos-situacion-en-2022/

Plastics Europe. (2023). Plastics: the fast facts 2023. https://plasticseurope.org/es/wp-content/uploads/sites/4/2023/10/Plastics-the-fast-Facts-2023.pdf

Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J. y Glöckner, F. O. (2013). The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Research, 41(D1), D590-D596. https://doi.org/10.1093/nar/gks1219

Tang, Z.-L.; Kuo, T.-A. y Liu, H.-H. (2017). The study of the microbes degraded polystyrene. Advances in Technology Innovation, 2(1), 13-17. https://ojs.imeti.org/index.php/AITI/article/view/204

Wang, J.; Wang, Y.; Li, X.; Weng, Y.; Wang, Y.; Han, X.; Peng, M.; Zhou, A. y Zhao, X. (2022a). Different performances in polyethylene or polystyrene plastics long-term feeding and biodegradation by Zophobas atratus and Tenebrio molitor larvae, and core gut bacterial- and fungal-microbiome responses. Journal of Environmental Chemical Engineering, 10(6), 108957. https://doi.org/10.1016/J.JECE.2022.108957

Wang, Y.; Luo, L.; Li, X.; Wang, J.; Wang, H.; Chen, C.; Guo, H.; Han, T.; Zhou, A. y Zhao, X. (2022b). Different plastics ingestion preferences and efficiencies of superworm (Zophobas atratus Fab.) and yellow mealworm (Tenebrio molitor Linn.) associated with distinct gut microbiome changes. Science of The Total Environment, 837, 155719. https://doi.org/10.1016/J.SCITOTENV.2022.155719

Xia, M.; Hu, L.; Huo, Y. X. y Yang, Y. (2020). Myroides albus sp. nov., isolated from the gut of plastic-eating larvae of the coleopteran insect Zophobas atratus. International Journal of Systematic and Evolutionary Microbiology, 70(10), 5460-5466. https://doi.org/10.1099/ijsem.0.004429

Xu, J.-L.; Lin, X.; Wang, J. J. y Gowen, A. A. (2022). A review of potential human health impacts of micro- and nanoplastics exposure. Science of The Total Environment, 851, 158111. https://doi.org/10.1016/j.scitotenv.2022.158111

Xu, Z.; Xia, M.; Huo, Y. X. y Yang, Y. (2020). Intestinirhabdus alba gen. Nov., sp. nov., a novel genus of the family enterobacteriaceae, isolated from the gut of plastic-eating larvae of the Coleoptera insect Zophobas atratus. International Journal of Systematic and Evolutionary Microbiology, 70(9), 4951-4959. https://doi.org/10.1099/ijsem.0.004364

Yang, S. y Wu, W. (2020). Biodegradation of plastics in Tenebrio genus (Mealworms). En H. Defu y L. Yongming (eds.), Microplastics in terrestrial environments - emerging contaminants and major challenges. The handbook of environmental chemistry (vol. 95, pp. 385-422). Springer, Cham. https://doi.org/10.1007/698_2020_457

Yang, Y.; Wang, J. y Xia, M. (2020). Biodegradation and mineralization of polystyrene by plastic-eating superworms Zophobas atratus. Science of The Total Environment, 708, 135233. https://doi.org/10.1016/J.SCITOTENV.2019.135233

Yang, Y.; Yang, J.; Wu, W.; Zhao, J.; Song, Y.; Gao, L.; Yang, R. y Jiang, L. (2015a). Biodegradation and mineralization of polystyrene by plastic-eating mealworms: Part 1. Chemical and physical characterization and isotopic tests. Environmental Science & Technology, 49(20), 12087-12093. https://doi.org/10.1021/acs.est.5b02661

Yang, Y.; Yang, J.; Wu, W.; Zhao, J.; Song, Y.; Gao, L.; Yang, R. y Jiang, L. (2015b). Biodegradation and mineralization of polystyrene by plastic-eating mealworms: Part 2. Role of gut microorganisms. Environmental Science & Technology, 49(20), 12087-12093. https://doi.org/10.1021/acs.est.5b02663

Zhang, Y.; Pedersen, J. N.; Eser, B. E. y Guo, Z. (2022). Biodegradation of polyethylene and polystyrene: From microbial deterioration to enzyme discovery. Biotechnology Advances, 60, 107991. https://doi.org/10.1016/J.BIOTECHADV.2022.107991

Zhao, X.; Gao, P.; Zhao, Z.; Wu, Y. Sun, H. y Liu, C. (2024). Microplastics release from face masks: Characteristics, influential factors, and potential risks. Science of The Total Environment, 921, 171090. https://doi.org/10.1016/j.scitotenv.2024.171090

Cómo citar

APA

Martínez López, L. M., García-Ariza, J. E., Rojas Triviño, E. A. y López Álvarez, D. C. (2024). Exploración del microbioma intestinal de larvas de Zophobas morio (Coleoptera: Tenebrionidae) asociado a una dieta de poliestireno expandido . Acta Agronómica, 72(3). https://doi.org/10.15446/acag.v72n3.112558

ACM

[1]
Martínez López, L.M., García-Ariza, J.E., Rojas Triviño, E.A. y López Álvarez, D.C. 2024. Exploración del microbioma intestinal de larvas de Zophobas morio (Coleoptera: Tenebrionidae) asociado a una dieta de poliestireno expandido . Acta Agronómica. 72, 3 (ago. 2024). DOI:https://doi.org/10.15446/acag.v72n3.112558.

ACS

(1)
Martínez López, L. M.; García-Ariza, J. E.; Rojas Triviño, E. A.; López Álvarez, D. C. Exploración del microbioma intestinal de larvas de Zophobas morio (Coleoptera: Tenebrionidae) asociado a una dieta de poliestireno expandido . Acta Agron. 2024, 72.

ABNT

MARTÍNEZ LÓPEZ, L. M.; GARCÍA-ARIZA, J. E.; ROJAS TRIVIÑO, E. A.; LÓPEZ ÁLVAREZ, D. C. Exploración del microbioma intestinal de larvas de Zophobas morio (Coleoptera: Tenebrionidae) asociado a una dieta de poliestireno expandido . Acta Agronómica, [S. l.], v. 72, n. 3, 2024. DOI: 10.15446/acag.v72n3.112558. Disponível em: https://revistas.unal.edu.co/index.php/acta_agronomica/article/view/112558. Acesso em: 1 oct. 2024.

Chicago

Martínez López, Luisa María, Jeison Eduardo García-Ariza, Edwison Alberto Rojas Triviño, y Diana Carolina López Álvarez. 2024. «Exploración del microbioma intestinal de larvas de Zophobas morio (Coleoptera: Tenebrionidae) asociado a una dieta de poliestireno expandido ». Acta Agronómica 72 (3). https://doi.org/10.15446/acag.v72n3.112558.

Harvard

Martínez López, L. M., García-Ariza, J. E., Rojas Triviño, E. A. y López Álvarez, D. C. (2024) «Exploración del microbioma intestinal de larvas de Zophobas morio (Coleoptera: Tenebrionidae) asociado a una dieta de poliestireno expandido », Acta Agronómica, 72(3). doi: 10.15446/acag.v72n3.112558.

IEEE

[1]
L. M. Martínez López, J. E. García-Ariza, E. A. Rojas Triviño, y D. C. López Álvarez, «Exploración del microbioma intestinal de larvas de Zophobas morio (Coleoptera: Tenebrionidae) asociado a una dieta de poliestireno expandido », Acta Agron., vol. 72, n.º 3, ago. 2024.

MLA

Martínez López, L. M., J. E. García-Ariza, E. A. Rojas Triviño, y D. C. López Álvarez. «Exploración del microbioma intestinal de larvas de Zophobas morio (Coleoptera: Tenebrionidae) asociado a una dieta de poliestireno expandido ». Acta Agronómica, vol. 72, n.º 3, agosto de 2024, doi:10.15446/acag.v72n3.112558.

Turabian

Martínez López, Luisa María, Jeison Eduardo García-Ariza, Edwison Alberto Rojas Triviño, y Diana Carolina López Álvarez. «Exploración del microbioma intestinal de larvas de Zophobas morio (Coleoptera: Tenebrionidae) asociado a una dieta de poliestireno expandido ». Acta Agronómica 72, no. 3 (agosto 13, 2024). Accedido octubre 1, 2024. https://revistas.unal.edu.co/index.php/acta_agronomica/article/view/112558.

Vancouver

1.
Martínez López LM, García-Ariza JE, Rojas Triviño EA, López Álvarez DC. Exploración del microbioma intestinal de larvas de Zophobas morio (Coleoptera: Tenebrionidae) asociado a una dieta de poliestireno expandido . Acta Agron. [Internet]. 13 de agosto de 2024 [citado 1 de octubre de 2024];72(3). Disponible en: https://revistas.unal.edu.co/index.php/acta_agronomica/article/view/112558

Descargar cita

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Visitas a la página del resumen del artículo

80

Descargas

Los datos de descargas todavía no están disponibles.

Datos de los fondos