Publicado
Exploración del microbioma intestinal de larvas de Zophobas morio (Coleoptera: Tenebrionidae) asociado a una dieta de poliestireno expandido
Exploration of the intestinal microbiome of Zophobas morio larvae (Coleoptera: Tenebrionidae) associated with an expanded polystyrene diet
DOI:
https://doi.org/10.15446/acag.v72n3.112558Palabras clave:
coleópteros, dieta, metabarcoding, poliestireno, Pseudarthrobacter (es)coleoptera, diet, metabarcoding, polystyrene, Pseudarthrobacter (en)
Descargas
El poliestireno expandido (EPS) es un polímero sintético de uso común en diferentes industrias y posee una estabilidad molecular que le permite permanecer inmodificable por cientos de años generando un impacto negativo sobre el medio ambiente. Se ha reportado que larvas de coleópteros de la familia Tenebrionidae pueden biodegradarlo gracias a enzimas producidas por su microbiota intestinal. En esta investigación se caracterizó preliminarmente la microbioma intestinal de larvas de Zophobas morio alimentadas con poliestireno (PS) y avena, empleando metabarcoding, mediante secuenciación Illumina Miseq de la región V3-4 del gen 16s del ARNr. Con los resultados de la secuenciación se analizó la composición taxonómica y la abundancia relativa de las bacterias, de lo cual se obtuvo que el género Spiroplasma fue el más abundante en las dietas de PS y avena, y no se encontraron diferencias en los análisis de diversidad alfa. Sin embargo, se destacó el aumento del género Pseudarthrobacter en el microbioma de larvas alimentadas con poliestireno expandido y miembros de la familia Enterobacteriaceae sin asignación taxonómica a nivel de género. La identificación de microorganismos posiblemente asociados a una dieta de poliestireno es el punto de partida de ensayos de caracterización, aislamiento y biorremediación, para la degradación de este material; estos ensayos, además, pueden extenderse a otro tipo de plásticos.
Expanded polystyrene (EPS) is a synthetic polymer commonly used in different industries. It has a molecular stability that allows it to remain unchanged for hundreds of years, negatively impacting the environment. It has been reported that beetle larvae of the Tenebrionidae family can biodegrade it thanks to enzymes produced by their intestinal microbiota. In this research, the intestinal microbiome of Zophobas morio larvae fed with polystyrene (PS) and oat was characterized using metabarcoding, through Illumina Miseq sequencing of the V3-4 region of the 16s rRNA gene. With the results of the sequencing, the taxonomic composition and relative abundance of the bacteria were analyzed, obtaining that the Spiroplasma genus was the most abundant for both PS and oat diets; no differences were found in the alpha diversity analyses. However, the increase in the microbiome of expanded polystyrene-fed larvae of the genus Pseudarthrobacter and members of the family Enterobacteriaceae without taxonomic assignment at the genus level was highlighted. Microorganism identification possibly associated with the polystyrene diet is the reference for characterization, isolation, and bioremediation tests for the degradation of this material, these tests can be extended to other plastics.
Referencias
Andrady, A. L. y Neal, M. A. (2009). Applications and societal benefits of plastics. Philosophical Transactions of the Royal Society B: Biological Sciences, 364, 1977-1984. https://doi.org/10.1098/RSTB.2008.0304 DOI: https://doi.org/10.1098/rstb.2008.0304
Arunrattiyakorn, P.; Ponprateep, S.; Kaennonsang, N.; Charapok, Y.; Punphuet, Y.; Krajangsang, S.; Tangteerawatana, P. y Limtrakul, A. (2022). Biodegradation of polystyrene by three bacterial strains isolated from the gut of Superworms (Zophobas atratus larvae). Journal of Applied Microbiology, 132(4), 2823-2831. https://doi.org/10.1111/JAM.15474 DOI: https://doi.org/10.1111/jam.15474
Beule, L. y Karlovsky, P. (2020). Improved normalization of species count data in ecology by scaling with ranked subsampling (SRS): Application to microbial communities. PeerJ, 8, e9593. https://doi.org/10.7717/peerj.9593 DOI: https://doi.org/10.7717/peerj.9593
Bolyen, E.; Rideout, J. R.; Dillon, M. R.; Bokulich, N. A.; Abnet, C. C.; Al-Ghalith, G. A.; Alexander, H.; Alm, E. J.; Arumugam, M.; Asnicar, F., Bai, Y.; Bisanz, J. E.; Bittinger, K.; Brejnrod, A.; Brislawn, C. J.; Brown, C. T.; Callahan, B. J.; Caraballo-Rodríguez, A. M.; Chase, J. … y Caporaso, J. G. (2019). Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nature Biotechnology, 37(8), 852-857. https://doi.org/10.1038/s41587-019-0209-9 DOI: https://doi.org/10.1038/s41587-019-0209-9
Callahan, B. J.; McMurdie, P. J.; Rosen, M. J.; Han, A. W.; Johnson, A. J. A. y Holmes, S. P. (2016). DADA2: High-resolution sample inference from Illumina amplicon data. Nature Methods, 13(7), 581-583. https://doi.org/10.1038/nmeth.3869 DOI: https://doi.org/10.1038/nmeth.3869
Choi, I. H.; Lee, J. H. y Chung, T. H. (2020). Polystyrene biodegradation using Zophobas morio. Journal of Entomological Research, 44(3), 475-478. https://doi.org/10.5958/0974-4576.2020.00079.1 DOI: https://doi.org/10.5958/0974-4576.2020.00079.1
Chung, J. H.; Yeon, J.; Seong, H. J.; An, S. H.; Kim, D. Y.; Yoon, Y.; Weon, H. Y.; Kim, J. J. y Ahn, J. H. (2022). Distinct bacterial and fungal communities colonizing waste plastic films buried for more than 20 years in four landfill sites in Korea. Journal of Microbiology Biotechnology, 32(12), 1561-1572. https://doi.org/10.4014/JMB.2206.06021 DOI: https://doi.org/10.4014/jmb.2206.06021
Danso, D.; Chow, J. y Streita, W. R. (2019). Plastics: Environmental and biotechnological perspectives on microbial degradation. Applied and Environmental Microbiology, 85(19). https://doi.org/10.1128/AEM.01095-19 DOI: https://doi.org/10.1128/AEM.01095-19
Geyer, R.; Jambeck, J. R. y Law, K. L. (2017). Production, use, and fate of all plastics ever made. Science Advances, 3(7). DOI: 10.1126/sciadv.1700782 DOI: https://doi.org/10.1126/sciadv.1700782
Gilbert, J. A. y Dupont, C. L. (2011). Microbial metagenomics: Beyond the genome. Annual Review of Marine Science, 3, 347-371. https://doi.org/10.1146/annurev-marine-120709-142811 DOI: https://doi.org/10.1146/annurev-marine-120709-142811
Jambeck, J. R.; Geyer, R.; Wilcox, C.; Siegler, T. R.; Perryman, M.; Andrady, A.; Narayan, R. y Law, K. L. (2015). Plastic waste inputs from land into the ocean. Science, 347(6223), 768-771. DOI: 10.1126/science.1260352 DOI: https://doi.org/10.1126/science.1260352
Jiang, S.; Su, T.; Zhao, J.; Wang, Z.; Ferri, J. M.; Fombuena Borràs, V.; Fernando, M. y Carrasco, A. (2021). Biodegradation of polystyrene by Tenebrio molitor, Galleria mellonella, and Zophobas atratus Larvae and comparison of their degradation effects. Polymers 2021, 13(20), 3539. https://doi.org/10.3390/POLYM13203539 DOI: https://doi.org/10.3390/polym13203539
Kim, H. R.; Lee, H. M.; Yu, H. C.; Jeon, E.; Lee, S.; Li, J. y Kim, D. H. (2020). Biodegradation of polystyrene by Pseudomonas sp. isolated from the gut of guperworms (Larvae of Zophobas atratus). Environmental Science and Technology, 54(11), 6987-6996. https://doi.org/10.1021/acs.est.0c01495 DOI: https://doi.org/10.1021/acs.est.0c01495
Kotova, I. B.; Taktarova, Y. V.; Tsavkelova, E. A.; Egorova, M. A.; Bubnov, I. A.; Malakhova, D. V. ... y Bonch-Osmolovskaya, E. A. (2021). Microbial degradation of plastics and approaches to make it more efficient. Microbiology, 90, 671-701. https://doi.org/10.1134/S0026261721060084 DOI: https://doi.org/10.1134/S0026261721060084
Liu, R.; Zhao, S.; Zhang, B.; Li, G.; Fu, X.; Yan, P. y Shao, Z. (2023). Biodegradation of polystyrene (PS) by marine bacteria in mangrove ecosystem. Journal of Hazardous Materials, 442, 130056. https://doi.org/10.1016/j.jhazmat.2022.130056 DOI: https://doi.org/10.1016/j.jhazmat.2022.130056
Lorenz, P. y Eck, J. (2005). Metagenomics and industrial applications. Nature Reviews. Microbiology, 3(6), 510-516. https://doi.org/10.1038/nrmicro1161 DOI: https://doi.org/10.1038/nrmicro1161
Lovley, D. R. (2003). Cleaning up with genomics: Applying molecular biology to bioremediation. Nature Reviews Microbiology, 1(1), 35-44. https://doi.org/10.1038/nrmicro731 DOI: https://doi.org/10.1038/nrmicro731
Love, M. I.; Huber, W. y Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology, 15(12), 1-21. 10.1186/s13059-014-0550-8 DOI: https://doi.org/10.1186/s13059-014-0550-8
Luo, L.; Wang, Y.; Guo, H.; Yang, Y.; Qi, N.; Zhao, X.; Gao, S. y Zhou, A. (2021). Biodegradation of foam plastics by Zophobas atratus larvae (Coleoptera: Tenebrionidae) associated with changes of gut digestive enzymes activities and microbiome. Chemosphere, 282, 131006. https://doi.org/10.1016/J.CHEMOSPHERE.2021.131006 DOI: https://doi.org/10.1016/j.chemosphere.2021.131006
Mamun, A. al; Prasetya, T. A. E.; Dewi, I. R. y Ahmad, M. (2023). Microplastics in human food chains: Food becoming a threat to health safety. Science of The Total Environment, 858(1), 159834. https://doi.org/10.1016/J.SCITOTENV.2022.159834 DOI: https://doi.org/10.1016/j.scitotenv.2022.159834
Margalef, R. (1972). Homage to Evelyn Hutchinson, or why there is an upper limit to diversity. Transactions of the Connecticut Academy of Arts and Sciences, 44, 211-235. https://digital.csic.es/handle/10261/166281
Marrero-Coto, J.; Díaz-Valdivia, A. y Coto-Pérez, O. (2010). Mecanismos moleculares de resistencia a metales pesados en las bacterias y sus aplicaciones en la biorremediación. Revista CENIC Ciencias Biológicas, 41(1), 67-78. https://revista.cnic.edu.cu/index.php/RevBiol/article/view/609/493
Meng, T. K.; Kassim, A. S. B. M.; Razak, A. H. B. A. y Fauzi, N. A. B. M. (2021). Bacillus megaterium: A potential and an efficient bio-degrader of polystyrene. Brazilian Archives of Biology and Technology, 64, 1-12. https://doi.org/10.1590/1678-4324-2021190321 DOI: https://doi.org/10.1590/1678-4324-2021190321
ONU. (2018). Plásticos de un solo uso: una hoja de ruta para la Sostenibilidad. Programa de las Naciones Unidas para el Medio Ambiente. https://wedocs.unep.org/bitstream/handle/20.500.11822/25496/singleUsePlastic_SP.pdf?sequence=2&isAllowed=y
Peng, B. Y.; Su, Y.; Chen, Z.; Chen, J.; Zhou, X.; Benbow, M. E.; Criddle, C. S.; Wu, W. M. y Zhang, Y. (2019). Biodegradation of polystyrene by dark (Tenebrio obscurus) and yellow (Tenebrio molitor) mealworms (Coleoptera: Tenebrionidae). Environmental Science and Technology, 53(9), 5256-5265. https://doi.org/10.1021/ACS.EST.8B06963/SUPPL_FILE/ES8B06963_SI_001.PDF DOI: https://doi.org/10.1021/acs.est.8b06963
Peng, B. Y.; Sun, Y.; Wu, Z.; Chen, J.; Shen, Z.; Zhou, X.; Wu, W. M. y Zhang, Y. (2022). Biodegradation of polystyrene and low-density polyethylene by Zophobas atratus larvae: Fragmentation into microplastics, gut microbiota shift, and microbial functional enzymes. Journal of Cleaner Production, 367, 132987. https://doi.org/10.1016/J.JCLEPRO.2022.132987 DOI: https://doi.org/10.1016/j.jclepro.2022.132987
Plastics Europe. (2022). Plásticos. Situación en 2022. https://plasticseurope.org/es/knowledge-hub/plasticos-situacion-en-2022/
Plastics Europe. (2023). Plastics: the fast facts 2023. https://plasticseurope.org/es/wp-content/uploads/sites/4/2023/10/Plastics-the-fast-Facts-2023.pdf
Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J. y Glöckner, F. O. (2013). The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Research, 41(D1), D590-D596. https://doi.org/10.1093/nar/gks1219 DOI: https://doi.org/10.1093/nar/gks1219
Tang, Z.-L.; Kuo, T.-A. y Liu, H.-H. (2017). The study of the microbes degraded polystyrene. Advances in Technology Innovation, 2(1), 13-17. https://ojs.imeti.org/index.php/AITI/article/view/204
Wang, J.; Wang, Y.; Li, X.; Weng, Y.; Wang, Y.; Han, X.; Peng, M.; Zhou, A. y Zhao, X. (2022a). Different performances in polyethylene or polystyrene plastics long-term feeding and biodegradation by Zophobas atratus and Tenebrio molitor larvae, and core gut bacterial- and fungal-microbiome responses. Journal of Environmental Chemical Engineering, 10(6), 108957. https://doi.org/10.1016/J.JECE.2022.108957 DOI: https://doi.org/10.1016/j.jece.2022.108957
Wang, Y.; Luo, L.; Li, X.; Wang, J.; Wang, H.; Chen, C.; Guo, H.; Han, T.; Zhou, A. y Zhao, X. (2022b). Different plastics ingestion preferences and efficiencies of superworm (Zophobas atratus Fab.) and yellow mealworm (Tenebrio molitor Linn.) associated with distinct gut microbiome changes. Science of The Total Environment, 837, 155719. https://doi.org/10.1016/J.SCITOTENV.2022.155719 DOI: https://doi.org/10.1016/j.scitotenv.2022.155719
Xia, M.; Hu, L.; Huo, Y. X. y Yang, Y. (2020). Myroides albus sp. nov., isolated from the gut of plastic-eating larvae of the coleopteran insect Zophobas atratus. International Journal of Systematic and Evolutionary Microbiology, 70(10), 5460-5466. https://doi.org/10.1099/ijsem.0.004429 DOI: https://doi.org/10.1099/ijsem.0.004429
Xu, J.-L.; Lin, X.; Wang, J. J. y Gowen, A. A. (2022). A review of potential human health impacts of micro- and nanoplastics exposure. Science of The Total Environment, 851, 158111. https://doi.org/10.1016/j.scitotenv.2022.158111 DOI: https://doi.org/10.1016/j.scitotenv.2022.158111
Xu, Z.; Xia, M.; Huo, Y. X. y Yang, Y. (2020). Intestinirhabdus alba gen. Nov., sp. nov., a novel genus of the family enterobacteriaceae, isolated from the gut of plastic-eating larvae of the Coleoptera insect Zophobas atratus. International Journal of Systematic and Evolutionary Microbiology, 70(9), 4951-4959. https://doi.org/10.1099/ijsem.0.004364 DOI: https://doi.org/10.1099/ijsem.0.004364
Yang, S. y Wu, W. (2020). Biodegradation of plastics in Tenebrio genus (Mealworms). En H. Defu y L. Yongming (eds.), Microplastics in terrestrial environments - emerging contaminants and major challenges. The handbook of environmental chemistry (vol. 95, pp. 385-422). Springer, Cham. https://doi.org/10.1007/698_2020_457 DOI: https://doi.org/10.1007/698_2020_457
Yang, Y.; Wang, J. y Xia, M. (2020). Biodegradation and mineralization of polystyrene by plastic-eating superworms Zophobas atratus. Science of The Total Environment, 708, 135233. https://doi.org/10.1016/J.SCITOTENV.2019.135233 DOI: https://doi.org/10.1016/j.scitotenv.2019.135233
Yang, Y.; Yang, J.; Wu, W.; Zhao, J.; Song, Y.; Gao, L.; Yang, R. y Jiang, L. (2015a). Biodegradation and mineralization of polystyrene by plastic-eating mealworms: Part 1. Chemical and physical characterization and isotopic tests. Environmental Science & Technology, 49(20), 12087-12093. https://doi.org/10.1021/acs.est.5b02661
Yang, Y.; Yang, J.; Wu, W.; Zhao, J.; Song, Y.; Gao, L.; Yang, R. y Jiang, L. (2015b). Biodegradation and mineralization of polystyrene by plastic-eating mealworms: Part 2. Role of gut microorganisms. Environmental Science & Technology, 49(20), 12087-12093. https://doi.org/10.1021/acs.est.5b02663 DOI: https://doi.org/10.1021/acs.est.5b02663
Zhang, Y.; Pedersen, J. N.; Eser, B. E. y Guo, Z. (2022). Biodegradation of polyethylene and polystyrene: From microbial deterioration to enzyme discovery. Biotechnology Advances, 60, 107991. https://doi.org/10.1016/J.BIOTECHADV.2022.107991 DOI: https://doi.org/10.1016/j.biotechadv.2022.107991
Zhao, X.; Gao, P.; Zhao, Z.; Wu, Y. Sun, H. y Liu, C. (2024). Microplastics release from face masks: Characteristics, influential factors, and potential risks. Science of The Total Environment, 921, 171090. https://doi.org/10.1016/j.scitotenv.2024.171090 DOI: https://doi.org/10.1016/j.scitotenv.2024.171090
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
CrossRef Cited-by
Dimensions
PlumX
Visitas a la página del resumen del artículo
Descargas
Datos de los fondos
-
Dirección de Investigación, Universidad Nacional de Colombia
Números de la subvención 51507
Licencia
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Política sobre Derechos de autor:Los autores que publican en la revista se acogen al código de licencia creative commons 4.0 de atribución, no comercial, sin derivados.
Es decir, que aún siendo la Revista Acta Agronómica de acceso libre, los usuarios pueden descargar la información contenida en ella, pero deben darle atribución o reconocimiento de propiedad intelectual, deben usarlo tal como está, sin derivación alguna y no debe ser usado con fines comerciales.