Publicado

2025-06-11

Effectiveness of pre-sowing fungicide treatment of soybean (Glycine max [L.] Merr.) seeds

Eficacia del tratamiento de semillas de soja (Glycine max [L.] Merr.) con fungicidas previo a la siembra

DOI:

https://doi.org/10.15446/acag.v73n2.116342

Palabras clave:

Disease severity and incidence, root rot, seed germination, seed capacity, yiel (en)
capacidad de germinación, germinación, podredumbre radicular, rendimiento, severidad e incidencia de la enfermedad (es)

Descargas

Autores/as

A study conducted at Lviv National Environmental University in 2023 examined the effects of nine fungicidal seed treatments on soybean (Ambella® variety) germination, root rot development, and yield. Seed germination energy and capacity were measured using the between-paper method at 5 and 8 days, respectively. Seed-borne infections and root rot pathogens were identified using the blotter method. Root rot incidence was assessed at soybean growth stages BBCH 12, BBCH 13, and BBCH 61. The data were analyzed using Statistica software. The best results were obtained with treatments containing fluxapyroxad (250 g L-1) + pyraclostrobin (250 g L-1) at rates of 0.4 ml kg-1 and 0.8 ml kg-1, and fludioxonil (25 g L-1) + metalaxyl-M (10 g L-1) at a rate of 1.0 ml kg-1, which led to high seed germination energy (90.5 % - 95.5 %), and capacity (95.5 % - 99.5 %), and yields of 3.53 - 3.59 tons per hectare. Soybean yield for seed treatment with thiophanate methyl (250 g L-1) + pyraclostrobin (25 g L-1) + fipronil (225 g L-1) at rates of 1.0 ml kg-1 and 1.5 ml kg-1 reached 3.52 tons and 3.75 tons per hectare, respectively. Overall, fungicide treatments improved both root health and yield of soybean compared to untreated seeds.

Un estudio realizado en 2023 en la Universidad Nacional Ambiental de Lviv examinó los efectos de nueve tratamientos fungicidas en la germinación, el desarrollo de la pudrición de las raíces y el rendimiento de la soja (variedad Ambella®). El estudio comparó semillas tratadas con un grupo de control. Se identificaron infecciones transmitidas por semillas y patógenos de la pudrición de la raíz utilizando el método del papel secante, y la energía y capacidad de germinación de las semillas se midieron a los 5 y 8 días, respectivamente. La incidencia de la pudrición de la raíz se evaluó durante las etapas BBCH 12, BBCH 13 y BBCH 61 de crecimiento de la soja. Los datos fueron analizados utilizando el software Statistica. Los mejores resultados se observaron con tratamientos que contenían fluxapyroxad (250 g L-1) + piraclostrobina (250 g L-1) a tasas de 0.4 ml kg-1 y 0.8 ml kg-1, y fludioxonil (25 g L-1) + metalaxil-M (10 g L-1) a una tasa de 1.0 ml kg-1, lo que llevó a una alta tasa de energía (90.5 % - 95.5 %) y capacidad (95.5 % - 99.5 %) de germinación, y rendimientos de 3.53 - 3.59 toneladas por hectárea. El rendimiento de la soja de semillas tratadas con metiltiofanato (250 g L-1) + piraclostrobina (25 g L-1) + fipronil (225 g L-1) a tasas de 1.0 ml kg-1y 1.5 ml kg-1 alcanzó 3.52 y 3.75 toneladas por hectárea, respectivamente. En general, los tratamientos fungicidas mejoraron tanto la salud de las raíces como el rendimiento de la soja en comparación con las semillas no tratadas.

Referencias

Ayesha, M. S.; Suryanarayanan, T. S.; Nataraja, K. N.; Prasad, S. R. and Shaanker, R. U. (2021). Seed treatment with systemic fungicides: Time for review. Frontiers in Plant Science, 12, 654512. https://doi.org/10.3389/fpls.2021.654512

Brown, J. and Kean, P. (1997). Assessment of disease and effects on yield. In: J. F. Brown and H. J. Ogle (Eds.), Plant Pathogens and Plant Diseases (pp. 315-329). Rockvale Publications. https://www.appsnet.org/plant-pathogens-and-plant-disease

FAO. (2015). World reference base for soil resources 2014, update 2015. International soil classification system for naming soils and creating legends for soil maps. Food and Agriculture Organization of the United Nations. https://www.fao.org/3/i3794en/I3794en.pdf

Feed and Grain Staff. (2024, August 13). Ukraine's soybean exports set new records. Feed and Grain. https://www.feedandgrain.com/grain-supply-chain/news/15681611/ukraines-soybean-exports-set-new-records?utm_source=chatgpt.com

Gebeyaw, M. (2020). Review on: Impact of seed-borne pathogens on seed quality. American Journal of Plant Biology, 5(4), 77-81. https://doi.org/10.11648/j.ajpb.20200504.11

Gomes, Y. C. B.; Dalchiavon, F. C. and Valadão, F. C. de A. (2017). Joint use of fungicides, insecticides and inoculants in the treatment of soybean seeds. Revista Ceres, 64(3), 258-265. https://doi.org/10.1590/0034-737X201764030006

Gowda, B.; Hiremath, U.; Kumara, V.; Ganiger, B. S. and Matti S. C. (2020). Effect of seed treatment with fungicides on seed quality of soybean (Glycine max L.) during storage. International Journal of Chemical Studies, 8(1), 420-424. https://doi.org/10.22271/chemi.2020.v8.i1f.8283

Gupta, A. and Kumar, R. (2020). Management of seed-borne diseases: an integrated approach. In: R. Kumar and A. Gupta (Eds.), Seed-borne diseases of agricultural crops: Detection, diagnosis and management (pp. 717-745). Springer. https://doi.org/10.1007/978-981-32-9046-4_25

Hameed, A.; Hameed, A.; Farooq, T.; Noreen, R.; Javed, S.; Batool, S.; Ahmad, A.; Gulzar, T. and Ahmad, M. (2019). Evaluation of structurally different benzimidazoles as priming agents, plant defence activators and growth enhancers in wheat. BMC Chemistry, 13, 29. https://doi.org/10.1186/s13065-019-0546-2

Hosseini, B.; Voegele, R. T. and Link, T. I. (2023). Diagnosis of soybean diseases caused by fungal and oomycete pathogens: Existing methods and new developments. Journal of Fungi, 9(5), 587. https://doi.org/10.3390/jof9050587

Junior, L. D. B.; Ferrari, J. L.; Dario, G.; Triboni, Y. de B. and Raetano. C. G. (2019). Physiological potential and initial development of soybean plants as a function of seed treatment. Pesquisa Agropecuária Tropical, 49, e55076. https://doi.org/10.1590/1983-40632019v4955076

Kandel, Y. R.; Lawson, M. N.; Brown, M. T.; Chilvers, M. I.; Kleczewski, N. M.; Telenko, D. E. P.; Tenuta, A. U.; Smith, D. L. and Mueller D. S. (2023). Field and greenhouse assessment of seed treatment fungicides for management of sudden death syndrome and yield response of soybean. Plant Disease, 107(4), 1131-1138. https://doi.org/10.1094/PDIS-03-22-0527-RE

Kyrychenko, O. V.; Kots, S. Y.; Khrapova, A. V. and Omelchuk, S. V. (2022). Biological activity of soybean seed lectin at the spraying of Glycine max plants against the background of seed treatment with pesticide containing fipronil, thiophanate-methyl, pyraclostrobin as active substances and rhizobial bacterization. Regulatory Mechanisms in Biosystems, 13(2), 105-113. https://doi.org/10.15421/022215

Lamichhane, J. R.; You, M. P.; Laudinot, V.; Barbetti, M. J. and Aubertot, J.-N. (2020). Revisiting sustainability of fungicide seed treatments for field crops. Plant Disease, 104(3), 610-623. https://doi.org/10.1094/PDIS-06-19-1157-FE

Li, P.; Sun, P.; Li, D.; Li, D.; Li, B. and Dong, X. (2020). Evaluation of pyraclostrobin as an ingredient for soybean seed treatment by analyzing its accumulation-dissipation kinetics, plant-growth activation, and protection against Phytophthora Sojae. Journal of Agricultural and Food Chemistry, 68(43), 11928-11938. http://doi.org/10.1021/acs.jafc.0c04376

Nan, Z. B. (1995) Fungicide seed treatments of sainfoin control seed‐borne and root‐invading fungi. New Zealand Journal of Agricultural Research, 38(3), 413-420, https://doi.org/10.1080/00288233.1995.9513144

Navi, S. S.; Huynh, T.; Mayers, C. G. and Yang X.-B. (2019). Diversity of Pythium spp. associated with soybean damping-off, and management implications by using foliar fungicides as seed treatments. Phytopathology Research, 1, 8. https://doi.org/10.1186/s42483-019-0015-9

Nyandoro, R.; Chang, K. F.; Hwang, S. F.; Ahmed, H. U.; Turnbull, G. D. and Strelkov, S. E. (2019). Management of root rot of soybean in Alberta with fungicide seed treatments and genetic resistance. Canadian Journal of Plant Science, 99(4), 499-509. https://doi.org/10.1139/cjps-2018-0266

Pikovskyi, M. and Solomiichuk, M. (2022). Identification of mycobiota and diagnosis of soybean seed diseases. Plant and Soil Science, 13(1), 44-50. https://doi.org/10.31548/agr.13(1).2022.44-50

Radzikowska, D.; Kowalczewski, P. Ł.; Grzanka, M.; Głowicka-Wołoszyn, R.; Nowicki, M. and Sawinska, Z. (2022). Succinate dehydrogenase inhibitor seed treatments positively affect the physiological condition of maize under drought stress. Frontiers in Plant Science, 13, 984248. https://doi.org/10.3389/fpls.2022.984248

Rossman, D. R.; Byrne, A. M. and Chilvers, M. I. (2018). Profitability and efficacy of soybean seed treatment in Michigan. Crop Protection, 114, 44-52. https://doi.org/10.1016/j.cropro.2018.08.003

Sahu, S. K.; Patel, A. K.; Sunderrao, R. R.; Netam, K. and Tandon, A. L. (2023). Studies on seed borne mycoflora of soybean seeds by incubation methods. International Journal of Plant and Soil Science, 35(18), 722-739. https://doi.org/10.9734/ijpss/2023/v35i183339

Sartori, F. F.; Pimpinato, R. F.; Tornisielo, V. L.; Engroff, T. D.; Jaccoud-Filho, D. de S.; Menten, J. O.; Dorrance, A. E. and Dourado-Neto, D. (2020). Soybean seed treatment: How do fungicides translocate in plants? Pest Management Science, 76(7), 2355-2359. https://doi.org/10.1002/ps.5771

Stevens, M. M.; Fox, K. M.; Coombes, N. E. and Lewin, L. A. (1999). Effect of fipronil seed treatments on the germination and early growth of rice. Pest Management Science, 55(5), 517-523. https://doi.org/10.1002/(SICI)1096-9063(199905)55:5<517::AID-PS940>3.0.CO;2-J

Thrane, M.; Paulsen, P. V.; Orcutt, M. W. and Krieger, T. M. (2017). Chapter 2. Soy protein: Impacts, production, and applications. In: S. R. Nadathur; J. P. D. Wanasundara and L. Scanlin (Eds.), Sustainable Protein Sources (pp. 23-45). Academic Press. https://doi.org/10.1016/B978-0-12-802778-3.00002-0

Triques, M. C.; Oliveira, D.; Goulart, B. V.; Montagner C. C.; Espíndola, E. L. G. and Menezes-Oliveira, V. B. (2021). Assessing single effects of sugarcane pesticides fipronil and 2,4-D on plants and soil organisms. Ecotoxicology and Environmental Safety, 208, 111622. https://doi.org/10.1016/j.ecoenv.2020.111622

Tsedaley, B. (2015). Review on seed health tests and detection methods of seedborne diseases. Journal of Biology, Agriculture and Healthcare, 5(5), 176-184. https://core.ac.uk/download/pdf/234660796.pdf

Turnipseed, B. (2013). Soybean seed testing and seed quality. In: D. E. Clay; C. G. Carlson; S. A. Clay; L. Wagner; D. Deneke and C. Hay (Eds), iGrow soybeans: Best management practices for soybean production (pp. 79-84). South Dakota State University, SDSU Extension. https://extension.sdstate.edu/sites/default/files/2020-03/S-0004-09-Soybean.pdf

UKRSTAT. (2023). Economic statistics/economic activity/agriculture, forestry and fishery: crops–growing. State Statistics Service of Ukraine (UKRSTAT). https://www.ukrstat.gov.ua/

Vishunavat, K.; Prabakar, K. and Anand, T. (2023). Seed health: Testing and management. In: M. Dadlani and D. K. Yadava (Eds.), Seed Science and Technology (pp. 335-364). Springer. https://doi.org/10.1007/978-981-19-5888-5_14

Cómo citar

APA

Holiachuk, Y., Kosylovych, H. & Ivaniuk, V. (2025). Effectiveness of pre-sowing fungicide treatment of soybean (Glycine max [L.] Merr.) seeds . Acta Agronómica, 73(2), 158–166. https://doi.org/10.15446/acag.v73n2.116342

ACM

[1]
Holiachuk, Y., Kosylovych, H. y Ivaniuk, V. 2025. Effectiveness of pre-sowing fungicide treatment of soybean (Glycine max [L.] Merr.) seeds . Acta Agronómica. 73, 2 (jun. 2025), 158–166. DOI:https://doi.org/10.15446/acag.v73n2.116342.

ACS

(1)
Holiachuk, Y.; Kosylovych, H.; Ivaniuk, V. Effectiveness of pre-sowing fungicide treatment of soybean (Glycine max [L.] Merr.) seeds . Acta Agron. 2025, 73, 158-166.

ABNT

HOLIACHUK, Y.; KOSYLOVYCH, H.; IVANIUK, V. Effectiveness of pre-sowing fungicide treatment of soybean (Glycine max [L.] Merr.) seeds . Acta Agronómica, [S. l.], v. 73, n. 2, p. 158–166, 2025. DOI: 10.15446/acag.v73n2.116342. Disponível em: https://revistas.unal.edu.co/index.php/acta_agronomica/article/view/116342. Acesso em: 27 dic. 2025.

Chicago

Holiachuk, Yulia, Halyna Kosylovych, y Victor Ivaniuk. 2025. «Effectiveness of pre-sowing fungicide treatment of soybean (Glycine max [L.] Merr.) seeds ». Acta Agronómica 73 (2):158-66. https://doi.org/10.15446/acag.v73n2.116342.

Harvard

Holiachuk, Y., Kosylovych, H. y Ivaniuk, V. (2025) «Effectiveness of pre-sowing fungicide treatment of soybean (Glycine max [L.] Merr.) seeds », Acta Agronómica, 73(2), pp. 158–166. doi: 10.15446/acag.v73n2.116342.

IEEE

[1]
Y. Holiachuk, H. Kosylovych, y V. Ivaniuk, «Effectiveness of pre-sowing fungicide treatment of soybean (Glycine max [L.] Merr.) seeds », Acta Agron., vol. 73, n.º 2, pp. 158–166, jun. 2025.

MLA

Holiachuk, Y., H. Kosylovych, y V. Ivaniuk. «Effectiveness of pre-sowing fungicide treatment of soybean (Glycine max [L.] Merr.) seeds ». Acta Agronómica, vol. 73, n.º 2, junio de 2025, pp. 158-66, doi:10.15446/acag.v73n2.116342.

Turabian

Holiachuk, Yulia, Halyna Kosylovych, y Victor Ivaniuk. «Effectiveness of pre-sowing fungicide treatment of soybean (Glycine max [L.] Merr.) seeds ». Acta Agronómica 73, no. 2 (junio 6, 2025): 158–166. Accedido diciembre 27, 2025. https://revistas.unal.edu.co/index.php/acta_agronomica/article/view/116342.

Vancouver

1.
Holiachuk Y, Kosylovych H, Ivaniuk V. Effectiveness of pre-sowing fungicide treatment of soybean (Glycine max [L.] Merr.) seeds . Acta Agron. [Internet]. 6 de junio de 2025 [citado 27 de diciembre de 2025];73(2):158-66. Disponible en: https://revistas.unal.edu.co/index.php/acta_agronomica/article/view/116342

Descargar cita

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Visitas a la página del resumen del artículo

396

Descargas

Los datos de descargas todavía no están disponibles.