Publicado

2026-01-06

Principales adulterantes del café: implicaciones en la salud pública y métodos analíticos para su detección

Major coffee adulterants: Implications for public health and analytical methods for their detection

DOI:

https://doi.org/10.15446/acag.v73n4.120328

Palabras clave:

adulteración, café, calidad, legislación, trazabilidad (es)
Adulteration, coffee, legislation, quality, traceability (en)

Descargas

Autores/as

La adulteración del café es un problema frecuente que viola las normas de seguridad alimentaria y representa un riesgo para la salud del consumidor, más allá de su posible impacto económico. Actualmente, existen leyes que buscan controlar la calidad en la producción y comercialización del café, sin embargo, su aplicación enfrenta limitaciones técnicas, como el tipo de adulterante a identificar, y económicas, como el costo de implementación de las técnicas analíticas. En este contexto, se desarrolló una revisión narrativa con el objetivo de compilar y analizar la evidencia científica más reciente sobre los principales adulterantes del café, sus efectos en la salud y los métodos analíticos empleados para su detección y control. La búsqueda bibliográfica se limitó a los últimos diez años e incluyó estudios experimentales y de revisión indexados en las bases de datos PubMed y Google Scholar. De los 53 artículos analizados se concluye que, aunque la mayoría de adulterantes son granos u otros alimentos, también se usan sustancias potencialmente peligrosas como fármacos y colorantes. Las regulaciones son más estrictas en países importadores y desarrollados, mientras que la falta de normativas en países productores facilita la adulteración y deja productos de menor calidad para el consumo local. Las técnicas basadas en análisis de ADN son las más prometedoras, aunque su implementación en países productores presenta desafíos técnicos y económicos.

Coffee adulteration is a recurring issue that compromises food safety standards and poses  significant risks to public health, extending beyond its economic implications. Although regulatory frameworks aim to ensure quality control in coffee production and commercialization, their effective implementation is often limited by technical challenges, such as the identification of specific adulterants, as well as by economic constraints related to the cost of suitable analytical methods. In this context, a narrative review was conducted to compile and analyze the most recent scientific evidence on major coffee adulterants, their associated health effects, and the analytical methods employed for their detection and control. The literature search was limited to studies published within the last ten years and included both experimental and review articles indexed in the PubMed and Google Scholar databases. Analysis of 53 selected studies revealed that, although most adulterants are food-based, particularly other grains, there is also evidence of the use of potentially harmful substances, including pharmaceuticals and dyes. Regulatory frameworks tend to be more stringent in developed and coffee-importing countries, whereas the lack of comprehensive legislation in many producing nations facilitates adulteration and results in lower-quality products being distributed locally. DNA-based analytical techniques show promise for the detection of coffee adulteration; however, their implementation in producing countries remains limited due to technical and financial barriers.

Referencias

Administración de Alimentos y Medicamentos  FDA . (2017). Manual de procedimientos macroanalíticos (MPM): V-1. Bebidas y materiales para bebidas. https://www.fda.gov/food/laboratory-methods-food/mpm-v-1-beverages-and-beverage-materials

Adnan, A., Naumann, M., Mörlein, D., & Pawelzik, E. (2020). Reliable Discrimination of Green Coffee Beans Species : A comparison of UV-Vis-Based Determination of Caffeine and Chlorogenic Acid with Non-Targeted Near-Infrared Spectroscopy. Foods, 9(788), 1–14. https://doi.org/10.3390/foods9060788

Arana, V. A., Medina, J., Alarcon, R., Moreno, E., Heintz, L., Schäfer, H., & Wist, J. (2015). Coffee ’ s country of origin determined by NMR : The Colombian case. Food Chemestry, 175, 500–506. https://doi.org/10.1016/j.foodchem.2014.11.160

Arrieta, A. A., Arrieta, P. L., & Mendoza, J. M. (2019). Analysis of coffee adulterated with roasted corn and roasted soybean using voltametric electronic tongue. Acta Sci. Pol. Technol. Aliment, 18(1), 35–41. https://doi.org/http://dx.doi.org/10.17306/J.AFS.2019.0619

Asensio, E., Peiro, T., & Nerín, C. (2019). Determination the set-o ff migration of ink in cardboard-cups used in co ff ee vending machines. Food and Chemical Toxicology, 130, 61–67. https://doi.org/10.1016/j.fct.2019.05.022

Bebius, A., Reding, F., Theurillat, V., Valérie, L., Konings, E., Delatour, T., & Desmarchelier, A. (2024). Determination of Acrylamide in Coffee, Cereals, Baby Food, Cocoa, Dry Pet Food, Potato Products, Vegetable Crisps, Biscuits, Tea, Nuts, and Spices by LC-MS/MS in a Single-Laboratory Validation: First Action 2023.01. Journal of AOAC International, 107(3), 453–463. https://doi.org/10.1093/jaoacint/qsae007

Bertholee, D., ter Horst, P., Wieringa, A., & Smit, J. (2013). Life-threatening psychosis caused by using sibutramine-contaminated weight-loss coffee. Nederlands Tijdschrift Voor Geneeskunde, 157(51), A6676.

Boadu, V. G.; Teye, E.; Amuah, C. y Sam-Amoah, L. K. (2022). Rapid authentication of coffee bean varieties of different forms by using a pocket-sized spectrometer and multivariate data modelling. Analytical Methods, 46. https://doi.org/10.1039/d2ay01480g

Brondi, A. M.; Torres, C.; Garcia, J. S. y Trevisan, M. G. (2017). Differential Scanning Calorimetry and Infrared Spectroscopy Combined with Chemometric Analysis to the Determination of Coffee Adulteration by Corn. Journal of the Brazilian Chemical Society, 28(7), 1308-1314. https://doi.org/10.21577/0103-5053.20160296

Burns, D. T. y Walker, M. J. (2020). Critical Review of Analytical and Bioanalytical Verification of the Authenticity of Coffee. AOAC International, 103(2), 283–294.

Burton, I. W.; Martínez, C. F.; Ragupathy, S.; Arunachalam, T.; Newmaster, S. y Berrué, F. (2020). Quantitative NMR methodology for the authentication of roasted coffee and prediction of blends. Journal of Agricultural and Food Chemistry, 68(49), 14643-14651. https://doi.org/10.1021/acs.jafc.0c06239

Cai, T.; Ting, H. y Jin-lan, Z. (2016). Novel identification strategy for ground coffee adulteration based on UPLC – HRMS oligosaccharide profiling. Food Chemistry, 190, 1046-1049. https://doi.org/10.1016/j.foodchem.2015.06.084

Cebi, N.; Yilmaz, M. T. y Sagdic, O. (2017). A rapid ATR-FTIR spectroscopic method for detection of sibutramine adulteration in tea and coffee based on hierarchical cluster. Food Chemistry, 229, 517-526. https://doi.org/10.1016/j.foodchem.2017.02.072

Cestari, A. (2021). Development of a fast and simple method to identify pure Arabica coffee and blended coffee by Infrared Spectroscopy. Journal of Food Science and Technology, 58, 3645-3654. https://doi.org/10.1007/s13197-021-05176-4

Cheah, W. L. y Fang, M. (2020). HPLC-based chemometric analysis for coffee adulteration. Foods, 9(7), 880. https://doi.org/10.3390/foods9070880

Chen, Y.; Gao, B. y Lu, W. (2023). Recent research advancements of coffee quality detection : targeted analyses vs . nontargeted fingerprinting and related issues. Journal of Food Quality, 2023(1). https://doi.org/10.1155/2023/6156247

Correia, R. M.; Tosato, F.; Domingos, E.; Rodrigues, R.; Aquino, L. F.; Filgueiras, P.; Lacerda, V. y Romão, W.(2018). Portable near infrared spectroscopy applied to quality control of Brazilian coffee. Talanta, 176, 59-68. https://doi.org/10.1016/j.talanta.2017.08.009

Daniel, D.; Silva Lopes, F. ; Bezerra dos Santos, V. y Lucio do Lago, C. (2018). Detection of coffee adulteration with soybean and corn by capillary electrophoresis-tandem mass spectrometry. Food Chemistry, 243, 305-310. https://doi.org/10.1016/j.foodchem.2017.09.140

Dankowska, A.; Domagała, A. y Kowalewski, W. (2017). Quantification of Coffea arabica and Coffea canephora var. robusta concentration in blends by means of synchronous fluorescence and UV-Vis spectroscopies. Talanta, 172, 215-220. https://doi.org/10.1016/j.talanta.2017.05.036

De Araújo, T. K.; Nóbrega, R.; Fernandes, D. D.; De Araújo, M. C. ; Diniz, P. H. y Da Silva, E. (2021). Non-destructive authentication of Gourmet ground roasted coffees using NIR spectroscopy and digital images. Food Chemistry, 364. https://doi.org/10.1016/j.foodchem.2021.130452

De Carvalho Couto, C., Davy William, H. C., Edna Maria, M. O., Otniel, F.-S., & Susana, C. (2024). SPME-GC-MS untargeted metabolomics approach to identify potential volatile compounds as markers for fraud detection in roasted and ground coffee. Food Chemistry, 446(138862). https://doi.org/10.1016/j.foodchem.2024.138862

De Carvalho Couto, C.; Freitas-Silva, O.; Morais Oliveira, E. M.; Sousa, C. y Casal, S. (2022). Near-infrared spectroscopy applied to the detection of multiple adulterants in roasted and ground arabica coffee. Foods, 11(1). https://doi.org/10.3390/foods11010061

De Carvalho Couto, C.; Hidalgo Chávez, D. W.; Morais Oliveira, E. M.; Freitas-Silva, O. y Casal, S. (2024). SPME-GC-MS untargeted metabolomics approach to identify potential volatile compounds as markers for fraud detection in roasted and ground coffee. Food Chemistry, 446, 138862. https://doi.org/10.1016/j.foodchem.2024.138862

De Morais, T.; Rodrigues, D. ; De Carvalho Polari Souto, U. T., y Lemos, S. G. (2019). A simple voltammetric electronic tongue for the analysis of coffee adulterations. Food Chemistry, 273, 31-38. https://doi.org/10.1016/j.foodchem.2018.04.136

De Moura Ribeiro, M. V.; Boralle, N.; Redigolo Pezza, H.; Pezza, L. y Toci, A. T. (2017). Authenticity of Roasted Coffee using 1 H NMR Spectroscopy. Journal of Food Composition and Analysis, 57, 24-30. https://doi.org/10.1016/j.jfca.2016.12.004

Desmarchelier, A.; Bebius, A.; Reding, F.; Griffin, A.; Ahijado, M. ; Beasley, J.; Clauzier, E. y Delatour, T. (2022). Towards a consensus LC-MS/MS method for the determination of acrylamide in food that prevents overestimation due to interferences. Food Additives & Contaminants, 39(4), 653-665. https://doi.org/10.1080/19440049.2021.2022773

Dharmawan, A.; Masithoh, R. y Zuhrotul Amanah, H. (2023). Development of PCA-MLP model based on visible and shortwave near infrared spectroscopy for authenticating arabica coffee origins. Foods, 12(11), 2112. https://doi.org/https://doi.org/10.3390/foods12112112

Domingues, D. S.; Pauli, E. D.; de Abreu, J. E.; Massura, F. W.; Cristiano, V.; Santos, M. J. y Nixdorf, S. L. (2014). Detection of roasted and ground coffee adulteration by HPLC by amperometric and by post-column derivatization UV – Vis detection. Food Chemistry, 146, 353-362. https://doi.org/10.1016/j.foodchem.2013.09.066

Farag, M. A.; Zayed, A.; Sallam, I. E.; Abdelwareth, A. y Wessjohann, L. A. (2022). Metabolomics-based approach for coffee beverage improvement in the context of processing, brewing methods, and quality attributes. Foods, 11(6). https://doi.org/10.3390/foods11060864

Ferrari, R. (2015). Writing narrative style literature reviews. Medical Writing, 24(4). https://doi.org/10.1179/2047480615Z.000000000329

Ferreira, T.; Farah, A.; Oliveira, T. C.; Lima, I. S.; Vitório, F. y Oliveira, E. (2016). Using real-time PCR as a tool for monitoring the authenticity of commercial coffees. Food Chemistry, 199, 433–438. https://doi.org/10.1016/j.foodchem.2015.12.045

Ferreira, T.; Galluzzi, L.; De Paulis, T. y Farah, A. (2021). Three centuries on the science of coffee authenticity control. Food Research International, 149, 110690. https://doi.org/10.1016/j.foodres.2021.110690

Flores-Valdez, M.; Meza-Márquez, O. G.; Osorio-Revilla, G.y Gallardo-Velázquez, T. (2020). Identification and quantification of adulterants in coffee (Coffea arabica L.) using FT-MIR spectroscopy coupled with chemometrics. Foods, 9(7). https://doi.org/10.3390/foods9070851

Freitas, J.; Ejaz, M.; Toci, A.; Romão, W. y Khimyak, Y. (2023). Solid-state NMR spectroscopy of roasted and ground coffee samples : Evidences for phase heterogeneity and prospects of applications in food screening. Food Chemistry, 409, 135317. https://doi.org/10.1016/j.foodchem.2022.135317

Haji, A.; Desalegn, K. y Hassen, H. (2023). Selected food items adulteration, their impacts on public health, and detection methods: A review. Food Science and Nutrition, 11(12), 7534-7545. https://doi.org/10.1002/fsn3.3732

Hoyos, D.; Gil-solsona, R.; Peñuela, G.; Sancho, J. V. y Hernández, F. (2018). Assessment of protected designation of origin for Colombian coffees based on HRMS-based metabolomics. Food Chemistry, 250, 89-97. https://doi.org/10.1016/j.foodchem.2018.01.038

Instituto Colombiano Agropecuario. (2007). Resolución 3626 Por la cual se establece el registro ante el ICA, de productores-comercializadores, y comercializadores de Colinos de Café, en el territorio nacional. 2007(46).

Ismaiel, L.; Fanesi, B.; Kuhalskaya, A.; Barp, L.; Moret, S.; Pacetti, D. y Lucci, P. (2023). The determination of triacylglycerols and tocopherols using UHPLC–CAD/FLD methods for assessing the authenticity of coffee beans. Foods, 12(23), 4197. https://doi.org/10.3390/foods12234197

Jumhawan, U.; Putri, S. P.; Yusianto; Bamba, T. y Fukusaki, E. (2016). Quantification of coffee blends for authentication of Asian palm civet coffee (Kopi Luwak) via metabolomics: A proof of concept. Journal of Bioscience and Bioengineering, 122(1), 79-84. https://doi.org/10.1016/j.jbiosc.2015.12.008

Kamiloglu, S. (2019). Authenticity and traceability in beverages. Food Chemistry, 277, 12-24.https://doi.org/10.1016/j.foodchem.2018.10.091

Klikarová, J. y Česlová, L. (2022). Targeted and non-targeted HPLC analysis of coffee-based products as effective tools for evaluating the coffee authenticity. Molecules, 27(721) 7419. https://doi.org/10.3390/molecules27217419

Markos, M.; Tola, Y.; Kebede, B. y Ogah, O. (2023). Metabolomics: A suitable foodomics approach to the geographical origin traceability of Ethiopian Arabica specialty coffees. Food Science and Nutrition, 11(8), 4419-4431. https://doi.org/10.1002/fsn3.3434

Martins, V. D. C.; Luiz, R.; Godoy, D. O.; Cristina, A.; Senna, M.; Cristina, M.; Araujo, P. De; Borguini, R. G.; Cristina, E.; Braga, D. O.; Pacheco, S. y Mattos, S. De (2018). Fraud investigation in commercial coffee by chromatography. Food Quality and Safety, June, 1-13. https://doi.org/10.1093/fqsafe/fyy017

Mendes, E. y Duarte, N. (2021). Mid-Infrared spectroscopy as a valuable tool to tackle food. Foods, 10(2), 477. https://doi.org/10.3390/foods10020477

Mihailova, A.; Liebisch, B.; Islam, M.; Carstensen, J. M.; Cannavan, A. y Kelly, S. (2022). The use of multispectral imaging for the discrimination of Arabica and Robusta coffee beans. Food Chemistry: X, 14, 100325. https://doi.org/10.1016/j.fochx.2022.100325

Milani, M. I.; Rossini, E. L.; Catelani, T. A.; Pezza, L.; Toci, A. T. y Pezza, H. R. (2020). Authentication of roasted and ground coffee samples containing multiple adulterants using NMR and a chemometric approach. Food Control, 112. https://doi.org/10.1016/j.foodcont.2020.107104

Mujahid, C.; Savoy, M.; Baslé, Q.; Woo, P. M.; Chin, E., Mottier, P. y Bessaire, T. (2020). Levels of Alternaria toxins in selected food commodities including green coffee. Toxins, 12(9), 1-17. https://doi.org/10.3390/toxins12090595

Muniz, R. ;Gonzalez, J. L.; Toci, A. y Freitas, J. (2023). Using 1H low-field NMR relaxometry to detect the amounts of Robusta and Arabica varieties in coffee blends. Food Research International, 174. https://doi.org/10.1016/j.foodres.2023.113610

Núñez, N.; Collado, X.; Martínez, C.; Saurina, J. y Núñez, O. (2020). Authentication of the origin, variety and roasting degree of coffee samples by non-targeted HPLC-UV fingerprinting and chemometrics. application to the detection and quantitation of adulterated coffee samples. Foods, 9(3), 1-14. https://doi.org/10.3390/foods9030378

Núñez, N.; Saurina, J. y Núñez, O. (2024). Liquid chromatography–high-resolution mass spectrometry (LC-HRMS) fingerprinting and chemometrics for coffee classification and authentication. Molecules, 29(1). https://doi.org/https://doi.org/10.3390/molecules29010232

Organización de las Naciones Unidas para la Alimentación y la Agricultura [FAO]. (n.d.). Historia. Codex alimentarius. https://www.fao.org/fao-who-codexalimentarius/about-codex/history/en/

Organización Internacional del Café [ICO]. (2008). International Coffee Agreement 2007. https://www.ico.org/documents/ed2040e.pdf

Pauli, E. D.; Barbieri, F.; Garcia, P.; Madeira, T. ; Acquaro Junior, V.; Scarminio, I. S.; Alberto, C. y Nixdorf, S. L. (2014). Detection of ground roasted coffee adulteration with roasted soybean and wheat. Food Research International, 61, 112-119. https://doi.org/10.1016/j.foodres.2014.02.032

Perez, M.; Domínguez-López, I.; López-Yerena, A.; y Vallverdú, A. (2023). Current strategies to guarantee the authenticity of coffee. Critical Reviews in Food Science and Nutrition, 63(4), 539–554. https://doi.org/10.1080/10408398.2021.1951651

Pradana-López, S.; Pérez-Calabuig, A. M.; Cancilla, J. C.; Lozano, M. A.; Rodrigo, C.; Mena, M. L. y Torrecilla, J. (2021). Deep transfer learning to verify quality and safety of ground coffee. Food Control, 122. https://doi.org/10.1016/j.foodcont.2020.107801

Reglamento CEE N° 2081/92. (1992). Relativo a la protección de las indicaciones geográficas y de las denominaciones de origen de los productos agrícolas y alimenticios.4, 1-8.

Reis, N.; Franca, A. S. y Oliveira, L. S. (2016). Concomitant use of fourier transform infrared attenuated total reflectance spectroscopy and chemometrics for quantification of multiple adulterants in roasted and ground coffee. 2016(1). https://doi.org/10.1155/2016/4974173

República de Panamá. (2022). Ley N° 326 (De lunes 05 de septiembre de 2022) que establece medidas para incentivar la producción, procesamiento y desarrollo del café.Gaceta Oficial de la República de Panamá, N.o29615B. 326 (29615). https://bit.ly/4j4HOlO

Roldán-Pérez, A. (2008). The japanese coffee market: opportunities for developing countries (with emphasis on Colombia). Editorial EAFIT.

Santos-Rivera, M.; Montagnon, C. y Sheibani, F. (2024). Identifying the origin of Yemeni green coffee beans using near infrared spectroscopy: A promising tool for traceability and sustainability. Scientific Reports, 1-12. https://doi.org/10.1038/s41598-024-64074-9

Schievano, E.; Finotello, C.; De Angelis, E.; Mammi, S. y Navarini, L. (2014). Rapid authentication of coffee blends and quantification of 16‑O‑methylcafestol in roasted coffee beans by nuclear magnetic resonance. Agricultural and Food Chemistry, 62(51), 12309-12314. https://doi.org/10.1021/jf505013d

Seto, Y.; Kataoka, M.; Tsuge, K. y Takaesu, H. (2000). Pitfalls in the Toxicological Analysis of an Isobutyl Nitrite-Adulterated Coffee Drink. Analytical Chemistry, 72(21), 5187-5192. https://doi.org/10.1021/ac000509c

Sezer, B.; Apaydin, H.; Bilge, G. y Boyaci, I. (2018). Coffee arabica adulteration: Detection of wheat, corn and chickpea. Food Chemistry, 264, 142-148. https://doi.org/10.1016/j.foodchem.2018.05.037

Shin, S.; Doh, I.; Okeyo, K.; Bae, E.; Robinson, J. P. y Rajwa, B. (2023). Hybrid Raman and laser-induced breakdown spectroscopy for food authentication applications. Molecules, 28(16). https://doi.org/https://doi.org/10.3390/molecules28166087

Song, H. Y.; Jang, H. W.; Debnath, T. y Lee K. G. (2019). Analytical method to detect adulteration of ground roasted coffee. International Jorurnal of Food Science and Technology, 1-7. https://doi.org/10.1111/ijfs.13942

Spaniolas, S.; Bazakos, C.; Tucker, G.; y Bennet, M. (2014). Comparison of SNP-based detection assays for food analysis: Coffee authentication. Food Composition and Aditives, 97(15), 1114-1120. https://doi.org/10.5740/jaoacint.13-237

Tibola, C. S.; Da Silva, S. ;Dossa, A. A. y Patrício, D. I. (2018). Economically motivated food fraud and adulteration in brazil: incidents and alternatives to minimize occurrence. Journal of Food Science, 83(8), 2028-2038. https://doi.org/10.1111/1750-3841.14279

Toci, A. T.; Farah, A.; Pezza, H. R. y Pezza, L. (2016). Coffee adulteration: more than two decades of research. Critical Reviews in Analytical Chemistry, 46(2), 83-92. https://doi.org/10.1080/10408347.2014.966185

Toledo, B. R.; Hantao, L.; Ho, T. D.; Augusto, F. y Anderson, J. L. (2014). A chemometric approach toward the detection and quantification of coffee adulteration by solid-phase microextraction using polymeric ionic liquid sorbent coatings. Journal of Chromatography A., 1345, 1-7. https://doi.org/10.1016/j.chroma.2014.04.035

U.S. Department of Agriculture. (2004). Commercial item Description: Coffee. https://www.ams.usda.gov/sites/default/files/media/CID Coffee.pdf

Vega, A.; De León, J. A. y Reyes, S. M. (2017). Determinación del contenido de polifenoles totales, flavonoides y actividad antioxidante de 34 cafés comerciales de Panamá. Información Tecnológica, 28(4), 29-38. https://doi.org/10.4067/S0718-07642017000400005

Wang, X.; Lim, L. T.; y Fu, Y. (2020). Review of analytical methods to detect adulteration in coffee. Journal of AOAC International, 103(2), 295-305. https://doi.org/10.1093/JAOCINT/QSZ019

Winkler-Moser, J. K.; Singh, M.; Rennick, K.; Bakota, E.; Jham, G.; Liu, S. y Vaughn, S. (2015). Detection of corn adulteration in Brazilian coffee (Coffea arabica) by tocopherol profiling and near-infrared (NIR) spectroscopy. Agricultural and Food Chemistry, 63(49), 10662-10668. https://doi.org/10.1021/acs.jafc.5b04777

Worku, M.; Upadhayay, H.; Latruwe, K.; Taylor, A.; Blake, W.; Vanhaecke, F.; Duchateau, L. y Boeckx, P. (2019). Differentiating the geographical origin of Ethiopian coffee using XRF- and ICP-based multi-element and stable isotope profiling. Food Chemistry, 290, 295-307. https://doi.org/10.1016/j.foodchem.2019.03.135

Wu, X.; Shin, S.; Gondhalekar, C.; Patsekin, V.; Bae, E.; Robinson, J. P. yRajwa, B. (2023). Rapid Food Authentication Using a Portable Laser-Induced Breakdown Spectroscopy System. Foods, 12(2), 402. https://doi.org/10.3390/foods12020402

Xie, J. y Tan, J. (2022). Front-face synchronous fluorescence spectroscopy: A rapid and non‑destructive authentication method for Arabica coffee adulterated with maize and soybean flours. Journal of Consumer Protection and Food Safety, 17(3), 209-219. https://doi.org/10.1007/s00003-022-01396-8

Yang, H.; Ai, J.; Zhu, Y.; Shi, Q. y Yu, Q. (2024). Rapid classification of coffee origin by combining mass spectrometry analysis of coffee aroma with deep learning. Food Chemistry, 446, 138811. https://doi.org/10.1016/j.foodchem.2024.138811

Yulia, M. y Suhandy, D. (2021). Quantification of corn adulteration in wet and dry-processed peaberry ground roasted coffees by UV–Vis spectroscopy and chemometrics. Molecules, 26(20), 6091. https://doi.org/10.3390/molecules26206091

Cómo citar

APA

Abrego-Gonzalez, K., Vega Ríos, A., Guerrero De León, E. & Moran Pinzón, J. A. (2025). Principales adulterantes del café: implicaciones en la salud pública y métodos analíticos para su detección. Acta Agronómica, 73(4), 399–411. https://doi.org/10.15446/acag.v73n4.120328

ACM

[1]
Abrego-Gonzalez, K., Vega Ríos, A., Guerrero De León, E. y Moran Pinzón, J.A. 2025. Principales adulterantes del café: implicaciones en la salud pública y métodos analíticos para su detección. Acta Agronómica. 73, 4 (dic. 2025), 399–411. DOI:https://doi.org/10.15446/acag.v73n4.120328.

ACS

(1)
Abrego-Gonzalez, K.; Vega Ríos, A.; Guerrero De León, E.; Moran Pinzón, J. A. Principales adulterantes del café: implicaciones en la salud pública y métodos analíticos para su detección. Acta Agron. 2025, 73, 399-411.

ABNT

ABREGO-GONZALEZ, K.; VEGA RÍOS, A.; GUERRERO DE LEÓN, E.; MORAN PINZÓN, J. A. Principales adulterantes del café: implicaciones en la salud pública y métodos analíticos para su detección. Acta Agronómica, [S. l.], v. 73, n. 4, p. 399–411, 2025. DOI: 10.15446/acag.v73n4.120328. Disponível em: https://revistas.unal.edu.co/index.php/acta_agronomica/article/view/120328. Acesso em: 14 ene. 2026.

Chicago

Abrego-Gonzalez, Kilmara, Aracelly Vega Ríos, Estela Guerrero De León, y Juan Antonio Moran Pinzón. 2025. «Principales adulterantes del café: implicaciones en la salud pública y métodos analíticos para su detección». Acta Agronómica 73 (4):399-411. https://doi.org/10.15446/acag.v73n4.120328.

Harvard

Abrego-Gonzalez, K., Vega Ríos, A., Guerrero De León, E. y Moran Pinzón, J. A. (2025) «Principales adulterantes del café: implicaciones en la salud pública y métodos analíticos para su detección», Acta Agronómica, 73(4), pp. 399–411. doi: 10.15446/acag.v73n4.120328.

IEEE

[1]
K. Abrego-Gonzalez, A. Vega Ríos, E. Guerrero De León, y J. A. Moran Pinzón, «Principales adulterantes del café: implicaciones en la salud pública y métodos analíticos para su detección», Acta Agron., vol. 73, n.º 4, pp. 399–411, dic. 2025.

MLA

Abrego-Gonzalez, K., A. Vega Ríos, E. Guerrero De León, y J. A. Moran Pinzón. «Principales adulterantes del café: implicaciones en la salud pública y métodos analíticos para su detección». Acta Agronómica, vol. 73, n.º 4, diciembre de 2025, pp. 399-11, doi:10.15446/acag.v73n4.120328.

Turabian

Abrego-Gonzalez, Kilmara, Aracelly Vega Ríos, Estela Guerrero De León, y Juan Antonio Moran Pinzón. «Principales adulterantes del café: implicaciones en la salud pública y métodos analíticos para su detección». Acta Agronómica 73, no. 4 (diciembre 17, 2025): 399–411. Accedido enero 14, 2026. https://revistas.unal.edu.co/index.php/acta_agronomica/article/view/120328.

Vancouver

1.
Abrego-Gonzalez K, Vega Ríos A, Guerrero De León E, Moran Pinzón JA. Principales adulterantes del café: implicaciones en la salud pública y métodos analíticos para su detección. Acta Agron. [Internet]. 17 de diciembre de 2025 [citado 14 de enero de 2026];73(4):399-411. Disponible en: https://revistas.unal.edu.co/index.php/acta_agronomica/article/view/120328

Descargar cita

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Visitas a la página del resumen del artículo

34

Descargas

Los datos de descargas todavía no están disponibles.