Publicado

2018-04-01

Biological nitrogen fixation and agronomic features of soybean (Glycine max (L.) Merr.) crop under different doses of inoculant

Fijación biológica de nitrógeno y características agronómicas de la soja (Glycine max (L.) Merr.) bajo diferentes dosis de inoculante

Fixação biológica de nitrogênio e aspectos agronômicos da soja (Glycine max (L.) Merr.) sob diferentes doses de inoculante

DOI:

https://doi.org/10.15446/acag.v67n2.56375

Palabras clave:

Bradyrhizobium, inoculation, plant-soil relations, rhizosphere, soil microbiology, symbiosis. (en)
Bradyrhizobium, inoculación, relaciones planta-suelo, rizosfera, microbiología del suelo, simbiosis (es)
Bradyrhizobium, inoculação, microbiologia do solo, simbiose, relações planta-solo, rizósfera (pt)

Autores/as

  • Alessandro Pedrozo Universidade Paranaense - UNIPAR
  • Nelson João Girelli de Oliveira Universidade Paranaense – UNIPAR, Umuarama – PR, Brasil
  • Odair Alberton Universidade Paranaense – UNIPAR, Umuarama – PR, Brasil https://orcid.org/0000-0002-4819-6669
Soybean is one of the most important crops in the world and presents great versatility. This study aims to investigate the effect of the Bradyrhizobium japonicum inoculant at 0, 600 and 1200 mL ha-1 on soybean crop, with and without 1 L ha-1 calcium (Ca 41%) + 0.4 L ha-1 boron (B 14%). Plants were grown for 90 days in plastic pots with 3 kg of sand and vermiculite (v/v) autoclaved at 121oC for 1 h. The experiment was conducted in a completely randomized design with five replications in a greenhouse. Soybean yield parameters were evaluated, such as, dry weight of shoot, root and total; plant height, nitrogen in the shoot; number and dry weight of nodules; chlorophyll index in the leaves; number of pods per plant (NPPL); number of grains per pod (NGP); and number of grains per plant (NGPL). The addition of Ca + B increased significantly NPPL, NGPL and NGP. The NPPL, NGPL were significantly increased with 600 mL ha-1 of the inoculant. The dose of 600 mL ha-1 of the inoculant combined with Ca+B significantly stimulated NPPL, NGPL and NGP. It is concluded that the productivity of soybean was increased with addition of 600 mL ha-1 inoculant, in combination with Ca and B.

La soya es uno de los cultivos más importantes del mundo y presenta una gran versatilidad. Este estudio tiene como objetivo investigar el efecto del inoculante Bradyrhizobium japonicum a 0, 600 y 1200 ml ha-1 en cultivo de soya, con y sin 1 L ha-1 calcio (Ca 41%) + 0,4 L ha-1 boro (B 14 %). Las plantas se cultivaron durante 90 días en macetas de plástico con 3 kg de arena y vermiculita (v / v) tratadas en autoclave a 121°C durante 1 h. El experimento se realizó en un diseño completamente aleatorizado con cinco repeticiones en un invernadero. Se evaluaron los parámetros de rendimiento de soja, tales como, peso seco del brote, raíz y total; altura de la planta, nitrógeno en el brote; número y peso seco de los nódulos; índice de clorofila en las hojas; cantidad de mazorcas por planta (NPPL); número de granos por pod (NGP); y número de granos por planta (NGPL). La adición de Ca + B aumentó significativamente NPPL, NGPL y NGP. El NPPL y NGPL se incrementaron significativamente con 600 mL ha-1 del inoculante. La dosis de 600 ml ha-1 del inoculante combinado con Ca + B estimuló significativamente NPPL, NGPL y NGP. Se concluye que la productividad de la soya se incrementó con la adición de 600 mL ha-1 de inoculante, en combinación con Ca y B.

A soja é uma das oleaginosas mais importantes no mundo e possui grande versatilidade. O objetivo deste estudo foi estudar o efeito da inoculação de 600 e 1200 mL ha–1 de um inoculante líquido com Bradyrhizobium japonicum e com ou sem adição de 1 L de cálcio ha–1 (Ca 41%) e de 0,4 L de boro ha–1 (B 14%) na cultura da soja. As plantas foram crescidas por 90 dias em potes plásticos com 3 kg de areia: vermiculita (v:v) autoclavados (121ºC, 1 h). O experimento foi conduzido em delineamento inteiramente casualizado, com 5 repetições em casa de vegetação. Foram determinados parâmetros relacionados com o desenvolvimento e produtividade da soja, como: a massa seca da parte aérea, de raízes e total, nitrogênio da parte aérea, número e massa seca de nódulos, índice de clorofila das folhas, número de vagens por planta (NVPL), número de grãos por vagens (NGV) e número de grãos por planta (NGPL). A adição de Ca+B aumentou significantemente NVPL, NGPL e NGV. O NVPL, NGPL foram aumentados significantemente com a adição de 600 mL ha–1 inoculante. A adição de 600 mL ha–1 inoculante juntamente com a adição de Ca+B estimulou significativamente o NVPL, NGPL e NGV. Conclui- se que a produtividade da cultura da soja foi aumentada com a adição de 600 mL ha–1 inoculante juntamente com a adição de Ca e B.

Recibido: 21 de marzo de 2016; Aceptado: 21 de mayo de 2017

Abstract

Soybean is one of the most important crops in the world and presents great versatility. This study aims to investigate the effect of the Bradyrhizobium japonicum inoculant at 0, 600 and 1200 mL ha1 on soybean crop, with and without 1 L ha-1 calcium (Ca 41%) + 0.4 L ha-1 boron (B 14%). Plants were grown for 90 days in plastic pots with 3 kg of sand and vermiculite (v/v) autoclaved at 121oC for 1 h. The experiment was conducted in a completely randomized design with five replications in a greenhouse. Soybean yield parameters were evaluated, such as, dry weight of shoot, root and total; plant height, nitrogen in the shoot; number and dry weight of nodules; chlorophyll index in the leaves; number of pods per plant (NPPL); number of grains per pod (NGP); and number of grains per plant (NGPL). The addition of Ca + B increased significantly NPPL, NGPL and NGP. The NPPL, NGPL were significantly increased with 600 mL ha-1 of the inoculant. The dose of 600 mL ha-1 of the inoculant combined with Ca+B significantly stimulated NPPL, NGPL and NGP. It is concluded that the productivity of soybean was increased with addition of 600 mL ha-1 inoculant, in combination with Ca and B.

Key words:

Bradyrhizobium, inoculation, plant-soil relations, rhizosphere, soil microbiology, symbiosis.

Resumo

A soja é uma das oleaginosas mais importantes no mundo e possui grande versatilidade. O objetivo deste estudo foi estudar o efeito da inoculação de 600 e 1200 mL ha-1 de um inoculante líquido com Bradyrhizobium japonicum e com ou sem adição de 1 L de cálcio ha-1 (Ca 41%) e de 0,4 L de boro ha-1 (B 14%) na cultura da soja. As plantas foram crescidas por 90 dias em potes plásticos com 3 kg de areia: vermiculita (v:v) autoclavados (121°C, 1 h). O experimento foi conduzido em delineamento inteiramente casualizado, com 5 repetições em casa de vegetação. Foram determinados parâmetros relacionados com o desenvolvimento e produtividade da soja, como: a massa seca da parte aérea, de raízes e total, nitrogênio da parte aérea, número e massa seca de nódulos, índice de clorofila das folhas, número de vagens por planta (NVPL), número de grãos por vagens (NGV) e número de grãos por planta (NGPL). A adição de Ca+B aumentou significantemente NVPL, NGPL e NGV. O NVPL, NGPL foram aumentados significantemente com a adição de 600 mL ha-1 inoculante. A adição de 600 mL ha-1 inoculante juntamente com a adição de Ca+B estimulou significativamente o NVPL, NGPL e NGV. Conclui- se que a produtividade da cultura da soja foi aumentada com a adição de 600 mL ha-1 inoculante juntamente com a adição de Ca e B.

Palavras-chaves:

Bradyrhizobium, inoculação, microbiologia do solo, simbiose, relações planta-solo, rizósfera.

Introduction

Soybean (Glycine max (L.) Merr.) is one of the most important crops in the world economy. The soybean grains are largely used in the agroindustry, mainly in the production of plant oil, animal feed, chemical products and food. Currently, soybean is also an alternative for biofuels. In addition, the soybean crops are very valuable due to their high levels of produced proteins. In Brazil, this fabacea plant is becoming increasingly economically viable due to the inoculation with strains of Bradyrhizobium and co-inoculation with Azospirillum (Hungria, Nogueira & Araujo, 2013).

Nitrogen (N) is the most demanded nutrient by the soybean crop. It is estimated that it takes 80 kg of N to make 1000 kg of grains. Basically, the N sources available to grow soybeans are the nitrogen fertilizers and the biological nitrogen fixation (BNF) (Hungria, Campo & Mendes, 2007).

Today, the bacterial BNF made by the Bradyrhizobium genus has decreased production costs and promoted more sustainable soybean crops. Consequently, it has resulted in an increased competitiveness of this commodity in the world market. This is possible because the bacterial BNF contributes sufficiently to a high soybean production, in addition to replace the N mineral fertilization (Hungria, Franchini, Campo & Graham, 2005; Hungria & Mendes, 2015).

However, the bacterial BNF efficiency depends on various edaphoclimatic factors, especially in the tropical regions. Moreover, management practices such as treatment with fungicides prior to inoculation also interfere in the bacterial BNF efficiency (Hungria, Campo & Mendes, 2007; Campo, Araújo, Mostasso & Hungria, 2010; Zilli, Campo & Hungria, 2010; Zilli, Gianluppi, Campo, Rouws & Hungria, 2010; Hungria & Mendes, 2015).

The BNF is the principal source of N for soybean crops. Bacteria of the Bradyrhizobium genus enter the root via infection of the root hairs, forming nodules (Hungria & Mendes, 2015).

The use of Bradyrhizobium nitrogen fixing bacteria is currently indispensable to grow soybean in the Brazilian fields (Hungria & Mendes, 2015). The efficiency of these microbes has enabled high grain yields, dispensing mineral nitrogen (Alves, Boddey & Urquiaga, 2003). The soybean inoculation with Bradyrhizobium via sowing furrows is a strategy to match the agrochemical seed treatment with the inoculation technique (Hungria, Campo & Mendes, 2007; Hungria, Nogueira & Araujo, 2013; Vieira-Neto, Pires, Menezes, Menezes, Silva, Silva & Assis, 2008a,b; Silva, Carvalho, Schoninger, Monteiro, Caione & Santos, 2011). This management practice is technically recommended and commonly used. However, information on benefits of this practice is scarce, especially in the case of sandy and little organic soils.

The Bradyrhizobium nodulation begins in soybean during the V2 growth stage (2-Trifoliolate), reaches its peak at the R2 stage (complete flowering) and then starts decreasing, when occurs an intense process of mobilization of N from the vegetative parts to the reproductive organs.

The BNF occurs in a sequence of processes that begins with the bacteria adaptation to the plant and culminates with the atmospheric N2 fixation (Hungria & Mendes, 2015). Nodulation begins about 2h after contact between bacteria and roots. The primary nodules develop in the root stretching regions, mainly in the growth zone of small root hairs, which are the main site for infection of nitrogen-fixing bacteria (Hungria, Campo & Mendes, 2007).

According to Hungria, Campo & Mendes (2007)), the activity of nitrogenase decreases at beginning of the formation of beans due to the competition for photosynthetic products among nodules, pods and beans. This competition can restrict the N availability for filling the grains due to the inadequate supply of photosynthetic products to the nodules (Hungria et al., 2007). Hungria et al. (2007) also explain that occurs a decrease in the N concentration in the vegetative parts of the plant during the pod development stage, as the N is mobilized to form pods and beans. So, in the reproductive stage, the N is moved to supply a stronger plant demand, represented by beans and pods, which causes a decrease in the BNF.

Some studies have assessed the performance of inoculations made in the sowing and planting furrows and their results have encouraged the use of this technique in peas, beans and soybeans (Campos, Hungria & Tedesco, 2001; Vieira Neto et al., 2008a,b; Zilli et al., 2010a,b). Regardless the way that the inoculant is applied, the yields from inoculation in areas previously cultivated with soybeans are lower than in areas unprecedentedly cultivated with soybeans (Campos, 1999). However, an average increase of 4.5% in the grain yields was already observed in areas previously cultivated with soybeans (Hungria et al., 2007). The natural occurrence of B. japonicum in uncropped soils is unlikely as soybean is an exotic plant and one of the few species that associates with these bacteria. However, it is possible that some new-introduced strains survive and naturalize in the soil through artificial inoculation or via seeds, even in the Biological nitrogen fixation and agronomic features of soybean (Glycine max (L.) Merr.) crop under different doses of inoculant presence of native strains (Campos, Hungria & Tedesco, 2001).

Direct seed farming is the most commonly used method of planting in soybean fields. It promotes an ecological environment different from the conventional, especially in the first centimeters of soil depth, where decreased temperature fluctuations and increased moisture can positively influence the microbial activity (Campo and Gnatta, 2006). Benefits are also observed in the rhizobium-legume symbiosis, such as, higher number of cells and diversity of Bradyrhizobium, higher number and weight of nodules, greater depth of nodules in soil and higher rates of BNF (Hungria et al., 2007).

In direct seed farming, the inoculation made in the sowing furrow can favor nodulation because rhizobia are better positioned next to roots right after the seedling emergence (Voss, 2002). Little is known about the differences between inoculation made in the sowing furrow and mixed in the seed. Similarly, there is little information on the effects of inoculation comparing soybean planting areas with areas not planted with soybeans.

Therefore, this study aims to analyze the effect of inoculating nitrogen-fixing bacteria, comparing doses of the Bradyrhizobium japonicum liquid inoculant with and without Ca+B on the soybean ((Glycine max (L.) Merr.) crop development and growth.

Material and Methods

Plants were grown for 90 days in 80 plastic pots, each containing 3 kg of sand and vermiculite (v/v) autoclaved at 121oC for 1h. The experiment was conducted in a completely randomized design with five replications in a greenhouse. The 8 treatments were defined as follows: 1-) 0 inoc.+ 0 N + 0 Ca+B; 2-) 600 mL ha-1 inoc. + 0 N + 0 Ca+B; 3-) 1200 mL ha-1 inoc. + 0 N + 0 Ca+B; 4-) 0 inoc. + 100 kg N ha-1 + 0 Ca+B; 5-) 0 inoc. + 100 kg N ha-1 + 1 L Ca ha-1 (Ca 41%) + 0,4 L B ha-1 (B 14%); 6-) 0 inoc.+ 0 N + 1 L Ca ha-1 (Ca 41%) + 0,4 L B ha-1 (B 14%); 7-) 600 mL ha-1 inoc. + 0 N + 1 L Ca ha-1 (Ca 41%) + 0,4 L B ha-1 (B 14%); 8-) 1200 mL ha-1 inoc + 0 N + 1 L Ca ha-1 (Ca 41%) + 0,4 L B ha-1 (B 14%).

The experiment started by October 2013. Three soybean seeds were sowed in each pot uniformly. The COODETEC CD 202 cultivar was recommended for this region and therefore used in this study. The Stoller Masterfix liquid inoculant containing Bradyrhyzobium japonicum (SEMIA 5079 + SEMIA 5080) was applied to treatments with inoculation. The calcium and boron used on the soybeans seeds at the time of sowing in this experiment were obtained from the Prime Agro Company, in the proportions of 1 L Ca ha-1 (Ca 41%) + 0.4 L B ha-1 (B 14%); recommended by the Prime Agro Company. Seeds were covered with 1-2 cm of autoclaved substrate and wet with nutrient solution. The treatments were irrigated as required, with nutrient solution according to Hoagland & Arnon (1950); however with and without N, following each treatment definition and the N was partitioned during the experiment.

In the V8 vegetative stage, 5 pots per treatment (40 pots) were selected to determine the chlorophyll index of the plants. The chlorophyll index of 5 completely developed leaves was measured in each pot by a portable chlorophyll meter (ClorofiLOG(r) CFL 1030), operating in the middle of the leaves, according to manufacturer instructions (Falker, 2008).

The plant heights (cm) and the root lengths (cm) were obtained with a tape measure. The nodules and leaves were numbered manually. The shoot, nodules and root were separated from plants and dried in an oven at 65°C for 48h. Then, these parts were weighted in a semi-analytical balance to determine the dry weight of nodules, root and shoot.

Subsequently, the shoot was ground to determine the level of N in the shoot (NS) with sulfuric acid digestion, followed by distillation according to the Kjeldahl method, as described by Silva (2009).

In the R8 reproductive stage, 5 pots per treatment (40 pots) were selected to determine the number of pods per plant (NPPL); number of grains per pod (NGP); and number of grains per plant (NGPL).

Data were subjected to ANOVA and means were compared by the Tukey test (p<0.05), using the SPSS software version 16.0 for Windows (SPSS Inc., Chicago, IL, USA).

Results

The inoculation with Bradyrhizobium at sowing increased the number and dry weight of nodules (Table 1). The number and dry weight of nodules increased significantly in treatments with inoculation at sowing in comparison to treatments without inoculation (Table 1).

Table 1: Values of P in ANOVA1 of number of nodules (NN), dry matter of nodules (DMN), root dry matter (RDM), shoot dry matter (SDM) and total dry matter (TDM).

*Mean values (± standard error); different letters in the same column differ significantly by the Tukey test (p < 0.05). Values of P in bold are significant (p < 0.05).

The plants become taller in the treatments with Bradyrhizobium inoculation at sowing and addition of Ca+B (Table 2). The increment in height was 67% compared with the control, with inoculation (600 mL ha-1) and addition of Ca+B.

Nitrogen content in the shots was increased by Bradyrhizobium inoculation at sowing (Table 3).

The soybean yield increased significantly in the treatment with 600 mL ha-1 inoculant and addition of Ca+B (Table 3). This result is demonstrated by the values of NPPL, NGP and NGPL found for this treatment, which are higher than those of other treatments (Table 3). In this case, the soybean yield increased at 10% in terms of grain production.

Table 2: Values of P in ANOVA2 of plant height, root length (RL), total plant length (PL), number of leaves (NL) and ratio shoot/root (S/R).

*Mean values (± standard error); different letters in the same column differ significantly by the Tukey test (p < 0.05). Values of P in bold are significant (p < 0.05).

Table 3: Values of P in ANOVA* of N content in the shoot (NS), index of chlorophyll (IC), number of pods per plant (NPPL), number of grains per plant (NGPL) and number of grains per pod (NGP).

*Mean values (± standard error); different letters in the same column differ significantly by the Tukey test (p < 0.05). Values of P in bold are significant (p < 0.05).

Discussion

The number and dry weight of nodules were increased by BNF inoculation. It can be explained by the highest efficiency of the inoculant when applied at sowing, verified by the highest number of nodules. Similar results were also observed in other studies (Viera-Neto et al., 2008a; Campos & Gnatta, 2006). Benefits are also observed in the rhizobia-legume symbiosis; in the case of soybean, it is found a higher number of cells and greater diversity of the Bradyrhizobium genus, higher number and weight of formed nodules, deeper distribution of nodules across the soil profile and higher BNF rates by the soybean plants (Hungria, Nogueira & Araujo, 2013).

The amount of nodules per plant found in the treatment with 600 mL ha-1 inoculant demonstrate that this dose is appropriate for supplying the N required by the plant for a normal development. Moreover, the application cost of 600 mL ha-1 inoculant is lower than that for 1200 mL ha-1.

Plants were higher when inoculated with BNF and addition of Ca+B. Moretto & Viecelli (2012), also observed a significant increasing in the plant height with application of higher doses of Ca (1.65 L ha-1 and 2.50 L ha-1). In this study, the increased plant height from the Ca application can be understood by the increased soil pH, which favored the availability of nutrients in the soil solution and consequently a better use of these by the plant. However, this is an untested hypothesis.

The soybean crop yield increased significantly in the treatment with 600 mL ha-1 inoculant and addition of Ca+B. In this case, the soybean yield increased at 10% in terms of grain production. Campos & Gnatta (2006), observed that the inoculation made in the sowing furrow could minimize some deleterious effects of the seed chemical treatments. They also verified a better crop performance when high amounts of Bradyrhizobium cells were inoculated together with the soybean seeds (up to 2.5 million cells per seed). In a different way, Silva et al. (2011), did not find significant differences between the two doses of B. japonicum inoculant (3 and 6 mL kg-1 seeds) tested with mineral N; both in the first year of using the soil for soybean crop and in the following year.

The productivity of four soybean cultivars inoculated with BNF was evaluated as a function of foliar mineral fertilizer application containing 8% Ca and 2% B in R1 stage (early flowering 50% of flowering plants) and R3 (final flowering, pod up to 1.5 cm in length) (Souza, Sá, Carvalho & Simidu, 2008). The productivity was significantly higher when the solution based on Ca and B was applied. In the present study, soybean yield increased at 10% in terms of grain production when with 600 mL ha-1 inoculant and addition of Ca+B being a viable technology to the soybeans producers.

Conclusion

The dose of600 mL ha-1 of the inoculant combined with Ca+B significantly increaded number of pods per plant, number of grains per pod and number of grains per plant. The inoculation of soybean plants with Bradyrhizobium at 600 mL ha-1 along with applications of Ca+B is a viable practice due to the practicality of operations and the increased soybean yield up to 10%.

Acknowledgements

The authors would like to thank to UNIPAR-Universidade Paranaense, Umuarama - PR, Brasil for the financial support.

References

Alves, B. J. R.; Boddey, R.M. & Urquiaga, S. (2003). The success of BNF in soybean in Brazil. Plant Soil252 (1), 1-9. http://dx.doi.org/10.1023/A-.1024191913296 [Link]

Campo, R. J.; Araújo, R. S.; Mostasso, F. L. & Hungria, M. (2001). In-furrow inoculation of soybean as alternative to fungicide and micronutrient seed treatment. Rev Bras Ciên Solo34 (4), 1103-1112. http://dx.doi.org/10.1590/S0100-06832010000400010 [Link]

Campos, B. C.; Hungria, M. & Tedesco, V. (2001). Eficiência da fixação biológica de N2 por estirpes de Bradyrhizobium na soja em plantio direto. Rev Bras Ciên Solo 25 (3), 583-592. http://dx.doi.org/10.1590/S0100-06832001000300007 [Link]

Campos, B.H.C. (1999). Dose de inoculante turfoso para soja em plantio direto. Ci Rural29 (3), 423-426. http://dx.doi.org/10.1590/S0103-84781999000300007 [Link]

Campos, B. H. C. & Gnatta, V. (2006). Inoculantes e fertilizantes foliares na soja em área de populações estabelecidas de Bradyrhizobium sob sistema plantio direto. Rev Bras Ciên Solo 30 (2), 69-76. http://dx.doi.org/10.1590/S0100-06832006000100008 [Link]

Falker. (2008). Automação Agrícola Ltda. Manual do medidor eletrônico de teor clorofila (ClorofiLOG / CFL 1030). Porto Alegre, Falker Automação Agrícola.

Hoagland, D. R. & Arnon, D. I. (1950). The water culture method for growing plants without soil. California Agricultural Experimental347, 1-32.

Hungria, M.; Franchini, J. C.; Campo, R. J. & Graham, P. H. (2005). The importance of nitrogen fixation to soybean cropping in South America. In: Werner, D.; W. E. Newton, W. E. (Eds.). Nitrogen fixation in agriculture, forestry, ecology, and the environment. Dordrecht: Springer, p. 25-42. http://dx.doi.org/10.1007/1-4020-3544-6_3 [Link]

Hungria, M.; Campo, R. J. & Mendes, I. C. (2007). A importância do processo de fixação biológica de nitrogênio para a cultura da soja: componente essencial para a competitividade do produto brasileiro. Documentos no 283, Londrina: Embrapa, 80 p.

Hungria, M. & Mendes, I. C. (2015). Nitrogen Fixation with Soybean: The Perfect Symbiosis?. In: Biological nitrogen fixationpp. 1009-1024. Frans J. de Bruijn (Eds.). http://dx.doi.org/10.1002/9781119053095.ch99 [Link]

Hungria, M.; Nogueira, M.A. & Araujo, R.S. (2013). Co-inoculation of soybeans and common beans with rhizobia and azospirilla: strategies to improve sustainability. Biol fert soils49(7), 791-801. https://doi.org/10.1007/s00374-012-0771-5 [Link]

Moretto, T. & Viecelli, C.A. (2012). Efeito de diferentes doses de cálcio aplicado no sulco de plantio sobre a produtividade da soja. Cultivando o Saber5(3), 47-52. https://www.fag.edu.br/upload/revista/cultivando_o_saber/507b484857e35.pdf [Link]

Silva, A. F.; Carvalho, M. A. C.; Schoninger, E. L.; Monteiro, S.; Caione, G. & Santos, P. A. (2011). Doses de inoculante e nitrogênio na semeadura da soja em área de primeiro cultivo. Biosci Journal27(3), 404-412. http://www.seer.ufu.br/index.php/biosciencejournal/article/viewFile/8067/7555 [Link]

Silva, C.F. (2009). Manual de análises químicas de Solos, plantas e fertilizantes. 2ed. Brasília DF: Embrapa, 627p.

Souza, L.C.D.; Sá, M.E.; Carvalho, M.A.C. & Simidu, H.M. (2008). Soybean seeds yield of four cultivars as function of the leaf mineral fertilizer application of calcium and boron. Revista de Biologia e Ciências da Terra8(2), 37-44.

Vieira-Neto, S. A.; Pires, F. R.; Menezes, C. C. E.; Menezes, J. F. S.; Silva, A. G.; Silva, G. P. & Assis, R. L. (2008a). Formas de aplicação de inoculante e seus efeitos sobre a nodulação da soja. Rev Bras Ciên Solo 32(2), 861-870. http://dx.doi.org/10.1590/S0100-06832008000200040 [Link]

Vieira-Neto, S. A.; Pires, F. R.; Menezes, C. C. E.; Silva, A. G.; Assis, R. L.; Silva, G. P. & Menezes, J.F.S. (2008b). Formas de aplicação de inoculante e seus efeitos na cultura da soja. Biosci Journal 24(2), 56-68. http://www.seer.ufu.br/index.php/biosciencejournal/article/view/6739/4448 [Link]

Voss, M. (2002). Inoculação de rizóbio no sulco de semeadura para soja, em um campo nativo, no norte do Rio Grande do Sul. Comunicado Técnico Online no 108, Passo Fundo: Embrapa. 5 p.

Zilli, E. J.; Campo, R. J. & Hungria, M. (2010). Eficácia da inoculação de Bradyrhizobium em pré-semeadura da soja. Pesq Agropec Bras45(3), 335-338. http://dx.doi.org/10.1590/S0100-204X2010000300015 [Link]

Zilli, E. J.; Gianluppi, V.; Campo, R. J.; Rouws, J. R. C. & Hungria, M. (2010). Inoculação da soja com Bradyrhizobium no sulco de semeadura alternativamente à inoculação de sementes. Rev. Bras Ciên Solo34 (6), 1875-1881. http://dx.doi.org/10.1590/S0100-06832010000600011 [Link]

Mean values (± standard error); different letters in the same column differ significantly by the Tukey test (p < 0.05). Values of P in bold are significant (p <0.05).
Mean values (± standard error); different letters in the same column differ significantly by the Tukey test (p < 0.05). Values of P in bold are significant (p <0.05).

Referencias

Alves, B. J. R.; Boddey, R.M. & Urquiaga, S. (2003). The success of BNF in soybean in Brazil. Plant Soil, 252 (1), 1–9. http://dx.doi.org/10.1023/A:1024191913296

Campo, R. J.; Araújo, R. S.; Mostasso, F. L. & Hungria, M. (2001). In-furrow inoculation of soybean as alternative to fungicide and micronutrient seed treatment. Rev Bras Ciên Solo, 34 (4), 1103–1112. http://dx.doi.org/10.1590/S0100-06832010000400010

Campos, B. C.; Hungria. M. & Tedesco, V. (2001). Eficiência da fixação biológica de N2 por estirpes de Bradyrhizobium na soja em plantio direto. Rev Bras Ciên Solo, 25 (3), 583–592. http://dx.doi.org/10.1590/S0100-06832001000300007

Campos, B.H.C. (1999). Dose de inoculante turfoso para soja em plantio direto. Ci Rural, 29 (3), 423–426. http://dx.doi.org/10.1590/S0103-84781999000300007

Campos, B. H. C. & Gnatta, V. (2006). Inoculantes e fertilizantes foliares na soja em área de populações estabelecidas de Bradyrhizobium sob sistema plantio direto. Rev Bras Ciên Solo, 30 (2), 69–76. http://dx.doi.org/10.1590/S0100-06832006000100008

Falker. (2008). Automação Agrícola Ltda. Manual do medidor eletrônico de teor clorofila (ClorofiLOG / CFL 1030). Porto Alegre, Falker Automação Agrícola.

Hoagland, D. R. & Arnon, D. I. (1950). The water culture method for growing plants without soil. California Agricultural Experimental, 347, 1–32.

Hungria, M.; Franchini, J. C.; Campo, R. J. & Graham, P. H. (2005). The importance of nitrogen fixation to soybean cropping in South America. In: Werner, D.; W. E. Newton, W. E. (Eds.). Nitrogen fixation in agriculture, forestry, ecology, and the environment. Dordrecht: Springer, p. 25–42. http://dx.doi.org/10.1007/1-4020-3544-6_3

Hungria, M.; Campo, R. J. & Mendes, I. C. (2007). A importância do processo de fixação biológica de nitrogênio para a cultura da soja: componente essencial para a competitividade do produto brasileiro. Documentos no 283, Londrina: Embrapa, 80 p.

Hungria, M. & Mendes, I. C. (2015). Nitrogen Fixation with Soybean: The Perfect Symbiosis?. In: Biological nitrogen fixation, pp. 1009-1024. Frans J. de Bruijn (Eds.). http://dx.doi.org/10.1002/9781119053095.ch99

Hungria, M.; Nogueira, M.A. & Araujo, R.S. (2013). Co-inoculation of soybeans and common beans with rhizobia and azospirilla: strategies to improve sustainability. Biol fert soils, 49(7), 791-801. https://doi.org/10.1007/s00374-012-0771-5

Moretto, T. & Viecelli, C.A. (2012). Efeito de diferentes doses de cálcio aplicado no sulco de plantio sobre a produtividade da soja. Cultivando o Saber, 5(3), 47–52. https://www.fag.edu.br/upload/revista/cultivando_o_saber/507b484857e35.pdf.

Silva, A. F.; Carvalho, M. A. C.; Schoninger, E. L.; Monteiro, S.; Caione, G. & Santos, P. A. (2011). Doses de inoculante e nitrogênio na semeadura da soja em área de primeiro cultivo. Biosci Journal, 27(3), 404–412. http://www.seer.ufu.br/index.php/biosciencejournal/article/viewFile/8067/7555.

Silva, C.F. (2009). Manual de análises químicas de Solos, plantas e fertilizantes. 2ed. Brasília DF: Embrapa, 627p.

Souza, L.C.D.; Sá, M.E.; Carvalho, M.A.C. & Simidu, H.M. (2008). Soybean seeds yield of four cultivars as function of the leaf mineral fertilizer application of calcium and boron. Revista de Biologia e Ciências da Terra, 8(2), 37–44.

Vieira-Neto, S. A.; Pires, F. R.; Menezes, C. C. E.; Menezes, J. F. S.; Silva, A. G.; Silva, G. P. & Assis, R. L. (2008a). Formas de aplicação de inoculante e seus efeitos sobre a nodulação da soja. Rev Bras Ciên Solo, 32(2), 861–870. http://dx.doi.org/10.1590/S0100-06832008000200040

Vieira-Neto, S. A.; Pires, F. R.; Menezes, C. C. E.; Silva, A. G.; Assis, R. L.; Silva, G. P. & Menezes, J.F.S. (2008b). Formas de aplicação de inoculante e seus efeitos na cultura da soja. Biosci Journal, 24(2), 56–68. http://www.seer.ufu.br/index.php/biosciencejournal/article/view/6739/4448.

Voss, M. (2002). Inoculação de rizóbio no sulco de semeadura para soja, em um campo nativo, no norte do Rio Grande do Sul. Comunicado Técnico Online no 108, Passo Fundo: Embrapa. 5 p.

Zilli, E. J.; Campo, R. J. & Hungria, M. (2010). Eficácia da inoculação de Bradyrhizobium em pré-semeadura da soja. Pesq Agropec Bras, 45(3), 335–338. http://dx.doi.org/10.1590/S0100-204X2010000300015

Zilli, E. J.; Gianluppi, V.; Campo, R. J.; Rouws, J. R. C. & Hungria, M. (2010). Inoculação da soja com Bradyrhizobium no sulco de semeadura alternativamente à inoculação de sementes. Rev. Bras Ciên Solo, 34 (6), 1875–1881. http://dx.doi.org/10.1590/S0100-06832010000600011

Cómo citar

APA

Pedrozo, A., Oliveira, N. J. G. de y Alberton, O. (2018). Biological nitrogen fixation and agronomic features of soybean (Glycine max (L.) Merr.) crop under different doses of inoculant. Acta Agronómica, 67(2), 297–302. https://doi.org/10.15446/acag.v67n2.56375

ACM

[1]
Pedrozo, A., Oliveira, N.J.G. de y Alberton, O. 2018. Biological nitrogen fixation and agronomic features of soybean (Glycine max (L.) Merr.) crop under different doses of inoculant. Acta Agronómica. 67, 2 (abr. 2018), 297–302. DOI:https://doi.org/10.15446/acag.v67n2.56375.

ACS

(1)
Pedrozo, A.; Oliveira, N. J. G. de; Alberton, O. Biological nitrogen fixation and agronomic features of soybean (Glycine max (L.) Merr.) crop under different doses of inoculant. Acta Agron. 2018, 67, 297-302.

ABNT

PEDROZO, A.; OLIVEIRA, N. J. G. de; ALBERTON, O. Biological nitrogen fixation and agronomic features of soybean (Glycine max (L.) Merr.) crop under different doses of inoculant. Acta Agronómica, [S. l.], v. 67, n. 2, p. 297–302, 2018. DOI: 10.15446/acag.v67n2.56375. Disponível em: https://revistas.unal.edu.co/index.php/acta_agronomica/article/view/56375. Acesso em: 20 abr. 2024.

Chicago

Pedrozo, Alessandro, Nelson João Girelli de Oliveira, y Odair Alberton. 2018. «Biological nitrogen fixation and agronomic features of soybean (Glycine max (L.) Merr.) crop under different doses of inoculant». Acta Agronómica 67 (2):297-302. https://doi.org/10.15446/acag.v67n2.56375.

Harvard

Pedrozo, A., Oliveira, N. J. G. de y Alberton, O. (2018) «Biological nitrogen fixation and agronomic features of soybean (Glycine max (L.) Merr.) crop under different doses of inoculant», Acta Agronómica, 67(2), pp. 297–302. doi: 10.15446/acag.v67n2.56375.

IEEE

[1]
A. Pedrozo, N. J. G. de Oliveira, y O. Alberton, «Biological nitrogen fixation and agronomic features of soybean (Glycine max (L.) Merr.) crop under different doses of inoculant», Acta Agron., vol. 67, n.º 2, pp. 297–302, abr. 2018.

MLA

Pedrozo, A., N. J. G. de Oliveira, y O. Alberton. «Biological nitrogen fixation and agronomic features of soybean (Glycine max (L.) Merr.) crop under different doses of inoculant». Acta Agronómica, vol. 67, n.º 2, abril de 2018, pp. 297-02, doi:10.15446/acag.v67n2.56375.

Turabian

Pedrozo, Alessandro, Nelson João Girelli de Oliveira, y Odair Alberton. «Biological nitrogen fixation and agronomic features of soybean (Glycine max (L.) Merr.) crop under different doses of inoculant». Acta Agronómica 67, no. 2 (abril 1, 2018): 297–302. Accedido abril 20, 2024. https://revistas.unal.edu.co/index.php/acta_agronomica/article/view/56375.

Vancouver

1.
Pedrozo A, Oliveira NJG de, Alberton O. Biological nitrogen fixation and agronomic features of soybean (Glycine max (L.) Merr.) crop under different doses of inoculant. Acta Agron. [Internet]. 1 de abril de 2018 [citado 20 de abril de 2024];67(2):297-302. Disponible en: https://revistas.unal.edu.co/index.php/acta_agronomica/article/view/56375

Descargar cita

CrossRef Cited-by

CrossRef citations6

1. Mariele Müller, Miroslava Rakocevic, Andréia Caverzan, Walter Boller, Geraldo Chavarria. (2018). Architectural Characteristics and Heliotropism May Improve Spray Droplet Deposition in the Middle and Low Canopy Layers in Soybean. Crop Science, 58(5), p.2029. https://doi.org/10.2135/cropsci2017.11.0653.

2. Álisson Queiroz Moura, Erikson Kadoshe de Morais Raimundo, Barbara Chrys Gomes Balduino, Ailsa Cristiane Arcanjo Soares, Victor Augusto Forti. (2020). MICRORGANISMOS E SEUS PRODUTOS DE FERMENTAÇÃO INTERFEREM NA QUALIDADE DE SEMENTES E PLÂNTULAS DE MILHO?. Nativa, 8(4), p.490. https://doi.org/10.31413/nativa.v8i4.9498.

3. Suman Bagale, Magdi Abdelhamid. (2021). Nutrient Management for Soybean Crops. International Journal of Agronomy, 2021, p.1. https://doi.org/10.1155/2021/3304634.

4. Wacław Jarecki. (2022). Physiological Response of Soybean Plants to Seed Coating and Inoculation under Pot Experiment Conditions. Agronomy, 12(5), p.1095. https://doi.org/10.3390/agronomy12051095.

5. Rohini Mattoo, Suman B M. (2023). Microbial roles in the terrestrial and aquatic nitrogen cycle—implications in climate change. FEMS Microbiology Letters, 370 https://doi.org/10.1093/femsle/fnad061.

6. Emilio Basantes Morales, Margarita M. Alconada, Brenda L. Asimbaya, José L. Pantoja. (2023). Applied Technologies. Communications in Computer and Information Science. 1756, p.447. https://doi.org/10.1007/978-3-031-24971-6_32.

Dimensions

PlumX

Visitas a la página del resumen del artículo

1169

Descargas

Los datos de descargas todavía no están disponibles.